Bibliography ABibliography C

Bibliography B

A♦B♦CDEFGHIJKLMNOPQRSTUVWXYZ
  • A. W. Babister (1967)
    Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations,
    The Macmillan Co., New York.
  • L. V. Babushkina, M. K. Kerimov and A. I. Nikitin (1988a)
    Algorithms for computing Bessel functions of half-integer order with complex arguments,
    Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • L. V. Babushkina, M. K. Kerimov and A. I. Nikitin (1988b)
    Algorithms for evaluating spherical Bessel functions in the complex domain,
    Zh. Vychisl. Mat. i Mat. Fiz. 28 (12), pp. 1779–1788, 1918.
  • L. V. Babushkina, M. K. Kerimov and A. I. Nikitin (1997)
    New tables of Bessel functions of complex argument,
    Comput. Math. Math. Phys. 37 (12), pp. 1480–1482.
  • G. Backenstoss (1970)
    Pionic atoms,
    Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • J. Baik, P. Deift and K. Johansson (1999)
    On the distribution of the length of the longest increasing subsequence of random permutations,
    J. Amer. Math. Soc. 12 (4), pp. 1119–1178.
  • D. H. Bailey (1993)
    Algorithm 719: Multiprecision translation and execution of Fortran programs,
    ACM Trans. Math. Software 19 (3), pp. 288–319.
  • D. H. Bailey (1995)
    A Fortran-90 based multiprecision system,
    ACM Trans. Math. Software 21 (4), pp. 379–387.
  • W. N. Bailey (1928)
    Products of generalized hypergeometric series,
    Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929)
    Transformations of generalized hypergeometric series,
    Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1935)
    Generalized Hypergeometric Series,
    Cambridge University Press, Cambridge.
  • W. N. Bailey (1964)
    Generalized Hypergeometric Series,
    Stechert-Hafner, Inc., New York.
  • G. A. Baker and P. Graves-Morris (1996)
    Padé Approximants,
    2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 59, Cambridge University Press, Cambridge.
  • H. F. Baker (1995)
    Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions,
    Cambridge University Press, Cambridge.
  • L. Baker (1992)
    C Mathematical Function Handbook,
    McGraw-Hill, Inc., New York.
  • P. Baldwin (1985)
    Zeros of generalized Airy functions,
    Mathematika 32 (1), pp. 104–117.
  • P. Baldwin (1991)
    Coefficient functions for an inhomogeneous turning-point problem,
    Mathematika 38 (2), pp. 217–238.
  • J. S. Ball (2000)
    Automatic computation of zeros of Bessel functions and other special functions,
    SIAM J. Sci. Comput. 21 (4), pp. 1458–1464.
  • L. E. Ballentine and S. M. McRae (1998)
    Moment equations for probability distributions in classical and quantum mechanics,
    Phys. Rev. A 58 (3), pp. 1799–1809.
  • C. B. Balogh (1967)
    Asymptotic expansions of the modified Bessel function of the third kind of imaginary order,
    SIAM J. Appl. Math. 15, pp. 1315–1323.
  • E. Bannai (1990)
    Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics,
    in Orthogonal Polynomials (Columbus, OH, 1989),
    NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 25–53.
  • A. Bar-Shalom and M. Klapisch (1988)
    NJGRAF: An efficient program for calculation of general recoupling coefficients by graphical analysis, compatible with NJSYM,
    Comput. Phys. Comm. 50 (3), pp. 375–393.
  • R. Barakat and E. Parshall (1996)
    Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy,
    Appl. Math. Lett. 9 (5), pp. 21–26.
  • R. Barakat (1961)
    Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials,
    Math. Comp. 15 (73), pp. 7–11.
  • P. Baratella and L. Gatteschi (1988)
    The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials,
    in Orthogonal Polynomials and Their Applications (Segovia, 1986),
    Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • M. N. Barber and B. W. Ninham (1970)
    Random and Restricted Walks: Theory and Applications.,
    Gordon and Breach, New York.
  • C. Bardin, Y. Dandeu, L. Gauthier, J. Guillermin, T. Lena, J. M. Pernet, H. H. Wolter and T. Tamura (1972)
    Coulomb functions in entire (\eta,\rho)-plane,
    Comput. Phys. Comm. 3 (2), pp. 73–87.
  • R. W. Barnard, K. Pearce and K. C. Richards (2000)
    A monotonicity property involving \mathop{{{}_{{3}}F_{{2}}}\/}\nolimits and comparisons of the classical approximations of elliptical arc length,
    SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • R. W. Barnard, K. Pearce and L. Schovanec (2001)
    Inequalities for the perimeter of an ellipse,
    J. Math. Anal. Appl. 260 (2), pp. 295–306.
  • A. R. Barnett, D. H. Feng, J. W. Steed and L. J. B. Goldfarb (1974)
    Coulomb wave functions for all real \eta and \rho,
    Comput. Phys. Comm. 8 (5), pp. 377–395.
  • A. R. Barnett (1981a)
    An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy,
    Comput. Phys. Comm. 21 (3), pp. 297–314.
  • A. R. Barnett (1981b)
    KLEIN: Coulomb functions for real \lambda and positive energy to high accuracy,
    Comput. Phys. Comm. 24 (2), pp. 141–159.
  • A. R. Barnett (1982)
    COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method,
    Comput. Phys. Comm. 27, pp. 147–166.
  • A. R. Barnett (1996)
    The Calculation of Spherical Bessel Functions and Coulomb Functions,
    in Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions,
    (J. Hinze Ed.), pp. 181–202.
  • E. Barouch, B. M. McCoy and T. T. Wu (1973)
    Zero-field susceptibility of the two-dimensional Ising model near T_{c},
    Phys. Rev. Lett. 31, pp. 1409–1411.
  • G. E. Barr (1968)
    A note on integrals involving parabolic cylinder functions,
    SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • R. F. Barrett (1964)
    Tables of modified Struve functions of orders zero and unity,
  • W. Barrett (1981)
    Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V,
    Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • P. Barrucand and D. Dickinson (1968)
    On the Associated Legendre Polynomials,
    in Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967),
    pp. 43–50.
  • D. A. Barry, S. J. Barry and P. J. Culligan-Hensley (1995a)
    Algorithm 743: WAPR: A Fortran routine for calculating real values of the W-function,
    ACM Trans. Math. Software 21 (2), pp. 172–181.
  • D. A. Barry, P. J. Culligan-Hensley and S. J. Barry (1995b)
    Real values of the W-function,
    ACM Trans. Math. Software 21 (2), pp. 161–171.
  • W. Bartky (1938)
    Numerical calculation of a generalized complete elliptic integral,
    Rev. Mod. Phys. 10, pp. 264–269.
  • A. O. Barut and L. Girardello (1971)
    New “coherent” states associated with non-compact groups,
    Comm. Math. Phys. 21 (1), pp. 41–55.
  • A. P. Bassom, P. A. Clarkson, A. C. Hicks and J. B. McLeod (1992)
    Integral equations and exact solutions for the fourth Painlevé equation,
    Proc. Roy. Soc. London Ser. A 437, pp. 1–24.
  • A. P. Bassom, P. A. Clarkson and A. C. Hicks (1993)
    Numerical studies of the fourth Painlevé equation,
    IMA J. Appl. Math. 50 (2), pp. 167–193.
  • A. P. Bassom, P. A. Clarkson and A. C. Hicks (1995)
    Bäcklund transformations and solution hierarchies for the fourth Painlevé equation,
    Stud. Appl. Math. 95 (1), pp. 1–71.
  • A. P. Bassom, P. A. Clarkson, C. K. Law and J. B. McLeod (1998)
    Application of uniform asymptotics to the second Painlevé transcendent,
    Arch. Rational Mech. Anal. 143 (3), pp. 241–271.
  • A. Basu and T. M. Apostol (2000)
    A new method for investigating Euler sums,
    Ramanujan J. 4 (4), pp. 397–419.
  • P. M. Batchelder (1967)
    An Introduction to Linear Difference Equations,
    Dover Publications Inc., New York.
  • H. Bateman (1905)
    A generalisation of the Legendre polynomial,
    Proc. London Math. Soc. (2) 3 (3), pp. 111–123.
  • H. Bateman and R. C. Archibald (1944)
    A guide to tables of Bessel functions,
    Mathematical Tables and Other Aids to Computation (now Mathematics of Computation) 1 (7), pp. 205–308.
  • F. L. Bauer, H. Rutishauser and E. Stiefel (1963)
    New Aspects in Numerical Quadrature,
    in Proc. Sympos. Appl. Math., Vol. XV,
    pp. 199–218.
  • G. Baxter (1961)
    Polynomials defined by a difference system,
    J. Math. Anal. Appl. 2 (2), pp. 223–263.
  • R. J. Baxter (1981)
    Rogers-Ramanujan identities in the hard hexagon model,
    J. Statist. Phys. 26 (3), pp. 427–452.
  • R. J. Baxter (1982)
    Exactly Solved Models in Statistical Mechanics,
    Academic Press Inc., London-New York.
  • K. Bay, W. Lay and A. Akopyan (1997)
    Avoided crossings of the quartic oscillator,
    J. Phys. A 30 (9), pp. 3057–3067.
  • C. Bays and R. H. Hudson (2000)
    A new bound for the smallest x with \pi(x)>{\rm li}(x),
    Math. Comp. 69 (231), pp. 1285–1296.
  • L. P. Bayvel and A. R. Jones (1981)
    Electromagnetic Scattering and its Applications,
    Applied Science Publishers, London.
  • A. Bañuelos, R. A. Depine and R. C. Mancini (1981)
    A program for computing the Fermi-Dirac functions,
    Comput. Phys. Comm. 21 (3), pp. 315–322.
  • A. Bañuelos and R. A. Depine (1980)
    A program for computing the Riemann zeta function for complex argument,
    Comput. Phys. Comm. 20 (3), pp. 441–445.
  • E. F. Beckenbach (Ed.) (1981)
    Applied Combinatorial Mathematics,
    Robert E. Krieger, Malabar, FL.
  • P. A. Becker (1997)
    Normalization integrals of orthogonal Heun functions,
    J. Math. Phys. 38 (7), pp. 3692–3699.
  • R. Becker and F. Sauter (1964)
    Electromagnetic Fields and Interactions,
    Vol. I, Blaisdell, New York.
  • P. Beckmann and A. Spizzichino (1963)
    The Scattering of Electromagnetic Waves from Rough Surfaces,
    Pergamon Press, New York.
  • V. M. Beli͡akov, R. I. Kravt͡sova and M. G. Rappoport (1962)
    Tablit͡sy Elliptic͡heskik͡h Integralov. Tom I,
    Mathematical tables of the Computing Center of the Academy of Sciences of the USSR], Izdat. Akad. Nauk SSSR, Moscow (Russian).
  • K. L. Bell and N. S. Scott (1980)
    Coulomb functions (negative energies),
    Comput. Phys. Comm. 20 (3), pp. 447–458.
  • R. Bellman (1961)
    A Brief Introduction to Theta Functions,
    Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York.
  • E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its and V. B. Matveev (1994)
    Algebro-geometric Approach to Nonlinear Integrable Problems,
    Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin.
  • S. L. Belousov (1962)
    Tables of Normalized Associated Legendre Polynomials,
    Pergamon Press, The Macmillan Co., Oxford-New York.
  • C. M. Bender and S. A. Orszag (1978)
    Advanced Mathematical Methods for Scientists and Engineers,
    McGraw-Hill Book Co., New York.
  • C. M. Bender and T. T. Wu (1973)
    Anharmonic oscillator. II. A study of perturbation theory in large order,
    Phys. Rev. D 7, pp. 1620–1636.
  • E. A. Bender (1974)
    Asymptotic methods in enumeration,
    SIAM Rev. 16 (4), pp. 485–515.
  • P. Berglund, P. Candelas, X. de la Ossa and et al. (1994)
    Periods for Calabi-Yau and Landau-Ginzburg vacua,
    Nuclear Phys. B 419 (2), pp. 352–403.
  • A. Berkovich and B. M. McCoy (1998)
    Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics,
    pp. 163–172.
  • G. D. Bernard and A. Ishimaru (1962)
    Tables of the Anger and Lommel-Weber Functions,
    Technical report
    Technical Report 53 and AFCRL 796, University Washington Press, Seattle.
  • B. C. Berndt, S. Bhargava and F. G. Garvan (1995)
    Ramanujan’s theories of elliptic functions to alternative bases,
    Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • B. C. Berndt and R. J. Evans (1984)
    Chapter 13 of Ramanujan’s second notebook: Integrals and asymptotic expansions,
    Expo. Math. 2 (4), pp. 289–347.
  • B. C. Berndt (1972)
    On the Hurwitz zeta-function,
    Rocky Mountain J. Math. 2 (1), pp. 151–157.
  • B. C. Berndt (1975a)
    Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications,
    J. Number Theory 7 (4), pp. 413–445.
  • B. C. Berndt (1975b)
    Periodic Bernoulli numbers, summation formulas and applications,
    in Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975),
    pp. 143–189.
  • B. C. Berndt (1989)
    Ramanujan’s Notebooks. Part II,
    Springer-Verlag, New York.
  • B. C. Berndt (1991)
    Ramanujan’s Notebooks. Part III,
    Springer-Verlag, Berlin-New York.
  • K. A. Berrington, P. G. Burke, J. J. Chang., A. T. Chivers, W. D. Robb and K. T. Taylor (1974)
    A general program to calculate atomic continuum processes using the R-matrix method,
    Comput. Phys. Comm. 8 (3), pp. 149–198.
  • M. V. Berry and C. J. Howls (1990)
    Stokes surfaces of diffraction catastrophes with codimension three,
    Nonlinearity 3 (2), pp. 281–291.
  • M. V. Berry and C. J. Howls (1991)
    Hyperasymptotics for integrals with saddles,
    Proc. Roy. Soc. London Ser. A 434, pp. 657–675.
  • M. V. Berry and C. J. Howls (1993)
    Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality,
    Proc. Roy. Soc. London Ser. A 443, pp. 107–126.
  • M. V. Berry and C. J. Howls (1994)
    Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals,
    Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • M. V. Berry and C. J. Howls (2010)
    Axial and focal-plane diffraction catastrophe integrals,
    J. Phys. A 43 (Art. ID 375206, 13 pages).
  • M. V. Berry and J. P. Keating (1992)
    A new asymptotic representation for \zeta(\frac{1}{2}+it) and quantum spectral determinants,
    Proc. Roy. Soc. London Ser. A 437, pp. 151–173.
  • M. V. Berry and J. P. Keating (1998)
    H=xp and the Riemann Zeros,
    in Supersymmetry and Trace Formulae: Chaos and Disorder,
    (J. P. Keating and D. E. Khmelnitskii Eds.), pp. 355–367.
  • M. V. Berry and J. P. Keating (1999)
    The Riemann zeros and eigenvalue asymptotics,
    SIAM Rev. 41 (2), pp. 236–266.
  • M. V. Berry, J. F. Nye and F. J. Wright (1979)
    The elliptic umbilic diffraction catastrophe,
    Phil. Trans. Roy. Soc. Ser. A 291 (1382), pp. 453–484.
  • M. V. Berry and C. Upstill (1980)
    Catastrophe optics: Morphologies of caustics and their diffraction patterns,
    in Progress in Optics,
    Vol. 18, pp. 257–346.
  • M. V. Berry and F. J. Wright (1980)
    Phase-space projection identities for diffraction catastrophes,
    J. Phys. A 13 (1), pp. 149–160.
  • M. V. Berry (1966)
    Uniform approximation for potential scattering involving a rainbow,
    Proc. Phys. Soc. 89 (3), pp. 479–490.
  • M. V. Berry (1969)
    Uniform approximation: A new concept in wave theory,
    Science Progress (Oxford) 57, pp. 43–64.
  • M. V. Berry (1975)
    Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces,
    J. Phys. A 8 (4), pp. 566–584.
  • M. V. Berry (1976)
    Waves and Thom’s theorem,
    Advances in Physics 25 (1), pp. 1–26.
  • M. V. Berry (1977)
    Focusing and twinkling: Critical exponents from catastrophes in non-Gaussian random short waves,
    J. Phys. A 10 (12), pp. 2061–2081.
  • M. V. Berry (1980)
    Some Geometric Aspects of Wave Motion: Wavefront Dislocations, Diffraction Catastrophes, Diffractals,
    in Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979),
    Vol. 36, pp. 13–28.
  • M. V. Berry (1981)
    Singularities in Waves and Rays,
    in Les Houches Lecture Series Session XXXV,
    (M. Kléman and J.-P. Poirier Eds.), Vol. 35, pp. 453–543.
  • M. V. Berry (1989)
    Uniform asymptotic smoothing of Stokes’s discontinuities,
    Proc. Roy. Soc. London Ser. A 422, pp. 7–21.
  • M. V. Berry (1991)
    Infinitely many Stokes smoothings in the gamma function,
    Proc. Roy. Soc. London Ser. A 434, pp. 465–472.
  • M. V. Berry (1995)
    The Riemann-Siegel expansion for the zeta function: High orders and remainders,
    Proc. Roy. Soc. London Ser. A 450, pp. 439–462.
  • E. Berti and V. Cardoso (2006)
    Quasinormal ringing of Kerr black holes: The excitation factors,
    Phys. Rev. D 74 (104020), pp. 1–27.
  • H. A. Bethe and E. E. Salpeter (1977)
    Quantum Mechanics of One- and Two-electron Atoms,
    Rosetta edition, Plenum Publishing Corp., New York.
  • F. Bethuel (1998)
    Vortices in Ginzburg-Landau Equations,
    pp. 11–19.
  • T. A. Beu and R. I. Câmpeanu (1983a)
    Prolate angular spheroidal wave functions,
    Comput. Phys. Comm. 30 (2), pp. 187–192.
  • T. A. Beu and R. I. Câmpeanu (1983b)
    Prolate radial spheroidal wave functions,
    Comput. Phys. Comm. 30 (2), pp. 177–185.
  • V. Bezvoda, R. Farzan, K. Segeth and G. Takó (1986)
    On numerical evaluation of integrals involving Bessel functions,
    Apl. Mat. 31 (5), pp. 396–410.
  • A. Bhattacharjie and E. C. G. Sudarshan (1962)
    A class of solvable potentials,
    Nuovo Cimento (10) 25, pp. 864–879.
  • A. Bhattacharyya and L. Shafai (1988)
    Theoretical and experimental investigation of the elliptical annual ring antenna,
    IEEE Trans. Antennas and Propagation 36 (11), pp. 1526–1530.
  • D. K. Bhaumik and S. K. Sarkar (2002)
    On the power function of the likelihood ratio test for MANOVA,
    J. Multivariate Anal. 82 (2), pp. 416–421.
  • W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler and A. J. Thompson (1952)
    Bessel Functions. Part II: Functions of Positive Integer Order,
    British Association for the Advancement of Science, Mathematical Tables, Volume 10, Cambridge University Press, Cambridge.
  • W. G. Bickley and J. Nayler (1935)
    A short table of the functions \mathrm{Ki}_{n}(x), from n=1 to n=16,
    Phil. Mag. Series 7 20, pp. 343–347.
  • W. G. Bickley (1935)
    Some solutions of the problem of forced convection.,
    Philos. Mag. Series 7 20, pp. 322–343.
  • L. C. Biedenharn, R. L. Gluckstern, M. H. Hull and G. Breit (1955)
    Coulomb functions for large charges and small velocities,
    Phys. Rev. (2) 97 (2), pp. 542–554.
  • L. C. Biedenharn and J. D. Louck (1981)
    Angular Momentum in Quantum Physics: Theory and Application,
    Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley Publishing Co., Reading, MA..
  • L. C. Biedenharn and H. van Dam (Eds.) (1965)
    Quantum Theory of Angular Momentum. A Collection of Reprints and Original Papers,
    Academic Press, New York.
  • D. Bierens de Haan (1867)
    Nouvelles Tables d’Intégrales Définies,
    P. Engels, Leide.