Bibliography QBibliography S

Bibliography R

ABCDEFGHIJKLMNOPQ♦R♦STUVWXYZ
  • H. Rademacher (1938)
    On the partition function \mathop{p\/}\nolimits\!\left(n\right),
    Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • H. Rademacher (1973)
    Topics in Analytic Number Theory,
    Springer-Verlag, New York.
  • H. A. Ragheb, L. Shafai and M. Hamid (1991)
    Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric,
    IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • M. Rahman (2001)
    The Associated Classical Orthogonal Polynomials,
    in Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ),
    NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • E. M. Rains (1998)
    Normal limit theorems for symmetric random matrices,
    Probab. Theory Related Fields 112 (3), pp. 411–423.
  • E. D. Rainville (1960)
    Special Functions,
    The Macmillan Co., New York.
  • A. Ralston (1965)
    Rational Chebyshev approximation by Remes’ algorithms,
    Numer. Math. 7 (4), pp. 322–330.
  • S. Ramanujan (1921)
    Congruence properties of partitions,
    Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927)
    Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.),
    in Collected Papers,
  • S. Ramanujan (1962)
    Collected Papers of Srinivasa Ramanujan,
    Chelsea Publishing Co., New York.
  • Ju. M. Rappoport (1979)
    Tablitsy modifitsirovannykh funktsii Besselya K_{{\frac{1}{2}+i\beta}}(x),
    “Nauka”, Moscow (Russian).
  • Yu. L. Ratis and P. Fernández de Córdoba (1993)
    A code to calculate (high order) Bessel functions based on the continued fractions method,
    Comput. Phys. Comm. 76 (3), pp. 381–388.
  • H. E. Rauch and A. Lebowitz (1973)
    Elliptic Functions, Theta Functions, and Riemann Surfaces,
    The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979)
    On the definition and properties of generalized 6-j symbols,
    J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. Razaz and J. L. Schonfelder (1980)
    High precision Chebyshev expansions for Airy functions and their derivatives,
    Technical report
    University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981)
    Remark on Algorithm 498: Airy functions using Chebyshev series approximations.,
    ACM Trans. Math. Software 7 (3), pp. 404–405.
  • REDUCE (commercial interactive system)
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih and X. Yin (1990)
    Fourier analysis and signal processing by use of the Möbius inversion formula,
    IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • W. H. Reid (1972)
    Composite approximations to the solutions of the Orr-Sommerfeld equation,
    Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a)
    Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow,
    Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b)
    Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory,
    Studies in Appl. Math. 53, pp. 217–224.
  • W. H. Reid (1995)
    Integral representations for products of Airy functions,
    Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a)
    Integral representations for products of Airy functions. II. Cubic products,
    Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b)
    Integral representations for products of Airy functions. III. Quartic products,
    Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • K. Reinsch and W. Raab (2000)
    Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation,
    in Special Functions (Hong Kong, 1999),
    (M. Ismail and R. Wong Eds.), pp. 293–308.
  • F. E. Relton (1965)
    Applied Bessel Functions,
    Dover Publications Inc., New York.
  • G. F. Remenets (1973)
    Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral,
    Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • E. Ya. Remez (1957)
    General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters,
    Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • S. R. Rengarajan and J. E. Lewis (1980)
    Mathieu functions of integral orders and real arguments,
    IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • P. Ribenboim (1979)
    13 Lectures on Fermat’s Last Theorem,
    Springer-Verlag, New York.
  • S. O. Rice (1954)
    Diffraction of plane radio waves by a parabolic cylinder. Calculation of shadows behind hills,
    Bell System Tech. J. 33, pp. 417–504.
  • D. St. P. Richards (Ed.) (1992)
    Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications,
    Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • D. St. P. Richards (2004)
    Total positivity properties of generalized hypergeometric functions of matrix argument,
    J. Statist. Phys. 116 (1-4), pp. 907–922.
  • È. Ya. Riekstynš (1991)
    Asymptotics and Bounds of the Roots of Equations (Russian),
    Zinatne, Riga.
  • B. Riemann (1859)
    Über die Anzahl der Primzahlen unter einer gegebenen Grösse,
    Monats. Berlin Akad. November 1859, pp. 671–680.
  • B. Riemann (1899)
    Elliptische Functionen,
    Teubner, Leipzig.
  • B. Riemann (1851)
    Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse,
    Inauguraldissertation, Göttingen.
  • J. Riordan (1958)
    An Introduction to Combinatorial Analysis,
    John Wiley & Sons Inc., New York.
  • J. Riordan (1979)
    Combinatorial Identities,
    Robert E. Krieger Publishing Co., Huntington, NY.
  • RISC Combinatorics Group (Web Site)
    Research Institute for Symbolic Computation, Hagenberg im Mühlkreis, Austria..
  • S. Ritter (1998)
    On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators,
    Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • T. J. Rivlin (1969)
    An Introduction to the Approximation of Functions,
    Blaisdell Publishing Co. (Ginn and Co.), Waltham, MA-Toronto-London.
  • L. Robin (1957)
    Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I,
    Gauthier-Villars, Paris.
  • L. Robin (1958)
    Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II,
    Gauthier-Villars, Paris.
  • L. Robin (1959)
    Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III,
    Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris.
  • H. P. Robinson (1972)
    Roots of \mathop{\tan\/}\nolimits x=x,
  • M. Robnik (1980)
    An extremum property of the n-dimensional sphere,
    J. Phys. A 13 (10), pp. L349–L351.
  • D. L. Rod and B. D. Sleeman (1995)
    Complexity in spatio-temporal dynamics,
    Proc. Roy. Soc. Edinburgh Sect. A 125 (5), pp. 959–974.
  • M. D. Rogers (2005)
    Partial fractions expansions and identities for products of Bessel functions,
    J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • A. Ronveaux (Ed.) (1995)
    Heun’s Differential Equations,
    The Clarendon Press Oxford University Press, New York.
  • C. C. J. Roothaan and S. Lai (1997)
    Calculation of 3n-j symbols by Labarthe’s method,
    International Journal of Quantum Chemistry 63 (1), pp. 57–64.
  • G. M. Roper (1951)
    Some Applications of the Lamé Function Solutions of the Linearised Supersonic Flow Equations,
    Technical Reports and Memoranda
    Technical Report 2865, Aeronautical Research Council (Great Britain).
  • R. R. Rosales (1978)
    The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent,
    Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman and D. R. Shier (Eds.) (2000)
    Handbook of Discrete and Combinatorial Mathematics,
    CRC Press, Boca Raton, FL.
  • K. H. Rosen (2004)
    Elementary Number Theory and its Applications,
    5th edition, Addison-Wesley, Reading, MA.
  • P. A. Rosenberg and L. P. McNamee (1976)
    Precision controlled trigonometric algorithms,
    Appl. Math. Comput. 2 (4), pp. 335–352.
  • H. Rosengren (1999)
    Another proof of the triple sum formula for Wigner 9j-symbols,
    J. Math. Phys. 40 (12), pp. 6689–6691.
  • H. Rosengren (2004)
    Elliptic hypergeometric series on root systems,
    Adv. Math. 181 (2), pp. 417–447.
  • J. B. Rosser (1939)
    The n-th prime is greater than n\mathop{\mathrm{log}\/}\nolimits n,
    Proceedings of the London Mathematical Society 45, pp. 21–44.
  • G. Rota (1964)
    On the foundations of combinatorial theory. I. Theory of Möbius functions,
    Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pp. 340–368.
  • M. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten, Jr. (1959)
    The 3-j and 6-j Symbols,
    The Technology Press, MIT, Cambridge, MA.
  • M. Rothman (1954a)
    Tables of the integrals and differential coefficients of \mathop{\mathrm{Gi}\/}\nolimits(+x) and \mathop{\mathrm{Hi}\/}\nolimits(-x),
    Quart. J. Mech. Appl. Math. 7 (3), pp. 379–384.
  • M. Rothman (1954b)
    The problem of an infinite plate under an inclined loading, with tables of the integrals of \mathop{\mathrm{Ai}\/}\nolimits(\pm x) and \mathop{\mathrm{Bi}\/}\nolimits(\pm x),
    Quart. J. Mech. Appl. Math. 7 (1), pp. 1–7.
  • K. Rottbrand (2000)
    Finite-sum rules for Macdonald’s functions and Hankel’s symbols,
    Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • D. H. Rouvray (1995)
    Combinatorics in Chemistry,
    in Handbook of Combinatorics, Vol. 2,
    (M. Grötschel and L. Lovász Eds.), pp. 1955–1981.
  • W. Rudin (1973)
    Functional Analysis,
    McGraw-Hill Book Co., New York.
  • W. Rudin (1976)
    Principles of Mathematical Analysis,
    3rd edition, McGraw-Hill Book Co., New York.
  • Hans-J. Runckel (1971)
    On the zeros of the hypergeometric function,
    Math. Ann. 191 (1), pp. 53–58.
  • J. Rushchitsky and S. Rushchitska (2000)
    On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media,
    in Differential Operators and Related Topics, Vol. I (Odessa, 1997),
    Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • A. Russell (1909)
    The effective resistance and inductance of a concentric main, and methods of computing the \mathrm{ber} and \mathrm{bei} and allied functions,
    Philos. Mag. (6) 17, pp. 524–552.
  • H. Rutishauser (1957)
    Der Quotienten-Differenzen-Algorithmus,
    Mitteilungen aus dem Institut für Angewandte Mathematik an der Eidgenössischen Technischen Hochschule in Zürich, No. 7, Birkhäuser, Basel/Stuttgart (German).
  • G. B. Rybicki (1989)
    Dawson’s integral and the sampling theorem,
    Computers in Physics 3 (2), pp. 85–87.