What's New
About the Project
NIST
Bibliography

Bibliography R

ABCDEFGHIJKLMNOPQ♦R♦STUVWXYZ
  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • H. Rademacher (1973) Topics in Analytic Number Theory. Springer-Verlag, New York.
  • H. A. Ragheb, L. Shafai and M. Hamid (1991) Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric. IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • E. D. Rainville (1960) Special Functions. The Macmillan Co., New York.
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). Collected Papers,
  • S. Ramanujan (1962) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York.
  • Ju. M. Rappoport (1979) Tablitsy modifitsirovannykh funktsii Besselya K12+iβ(x). “Nauka”, Moscow (Russian).
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6-j symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations.. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • REDUCE (commercial interactive system)
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. in C. Dunkl, M. Ismail and R. Wong (Eds.), Special Functions (Hong Kong, 1999), pp. 293–308.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • P. Ribenboim (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York.
  • S. O. Rice (1954) Diffraction of plane radio waves by a parabolic cylinder. Calculation of shadows behind hills. Bell System Tech. J. 33, pp. 417–504.
  • D. St. P. Richards (Ed.) (1992) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • È. Ya. Riekstynš (1991) Asymptotics and Bounds of the Roots of Equations (Russian). Zinatne, Riga.
  • B. Riemann (1859) Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monats. Berlin Akad. November 1859, pp. 671–680.
  • B. Riemann (1899) Elliptische Functionen. Teubner, Leipzig.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • J. Riordan (1958) An Introduction to Combinatorial Analysis. John Wiley & Sons Inc., New York.
  • J. Riordan (1979) Combinatorial Identities. Robert E. Krieger Publishing Co., Huntington, NY.
  • RISC Combinatorics Group (Web Site) Research Institute for Symbolic Computation, Hagenberg im Mühlkreis, Austria..
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • T. J. Rivlin (1969) An Introduction to the Approximation of Functions. Blaisdell Publishing Co. (Ginn and Co.), Waltham, MA-Toronto-London.
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • L. Robin (1959) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III. Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris.
  • H. P. Robinson (1972) Roots of tanx=x.
  • M. Robnik (1980) An extremum property of the n-dimensional sphere. J. Phys. A 13 (10), pp. L349–L351.
  • D. L. Rod and B. D. Sleeman (1995) Complexity in spatio-temporal dynamics. Proc. Roy. Soc. Edinburgh Sect. A 125 (5), pp. 959–974.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • C. C. J. Roothaan and S. Lai (1997) Calculation of 3n-j symbols by Labarthe’s method. International Journal of Quantum Chemistry 63 (1), pp. 57–64.
  • G. M. Roper (1951) Some Applications of the Lamé Function Solutions of the Linearised Supersonic Flow Equations. Technical Reports and Memoranda Technical Report 2865, Aeronautical Research Council (Great Britain).
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • K. H. Rosen, J. G. Michaels, J. L. Gross, J. W. Grossman and D. R. Shier (Eds.) (2000) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton, FL.
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • P. A. Rosenberg and L. P. McNamee (1976) Precision controlled trigonometric algorithms. Appl. Math. Comput. 2 (4), pp. 335–352.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9j-symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • J. B. Rosser (1939) The n-th prime is greater than nlogn. Proceedings of the London Mathematical Society 45, pp. 21–44.
  • G. Rota (1964) On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pp. 340–368.
  • M. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten, Jr. (1959) The 3-j and 6-j Symbols. The Technology Press, MIT, Cambridge, MA.
  • M. Rothman (1954a) Tables of the integrals and differential coefficients of Gi(+x) and Hi(-x). Quart. J. Mech. Appl. Math. 7 (3), pp. 379–384.
  • M. Rothman (1954b) The problem of an infinite plate under an inclined loading, with tables of the integrals of Ai(±x) and Bi(±x). Quart. J. Mech. Appl. Math. 7 (1), pp. 1–7.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • D. H. Rouvray (1995) Combinatorics in Chemistry. in R. L. Graham, M. Grötschel and L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, pp. 1955–1981.
  • W. Rudin (1973) Functional Analysis. McGraw-Hill Book Co., New York.
  • W. Rudin (1976) Principles of Mathematical Analysis. 3rd edition, McGraw-Hill Book Co., New York.
  • Hans-J. Runckel (1971) On the zeros of the hypergeometric function. Math. Ann. 191 (1), pp. 53–58.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • A. Russell (1909) The effective resistance and inductance of a concentric main, and methods of computing the ber and bei and allied functions. Philos. Mag. (6) 17, pp. 524–552.
  • H. Rutishauser (1957) Der Quotienten-Differenzen-Algorithmus. Mitteilungen aus dem Institut für Angewandte Mathematik an der Eidgenössischen Technischen Hochschule in Zürich, No. 7, Birkhäuser, Basel/Stuttgart (German).
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.