13.3 Recurrence Relations and Derivatives13.5 Continued Fractions

§13.4 Integral Representations

Contents

§13.4(i) Integrals Along the Real Line

13.4.1\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(b-a\right)}\int _{{0}}^{{1}}e^{{zt}}t^{{a-1}}(1-t)^{{b-a-1}}dt,\realpart{b}>\realpart{a}>0,
13.4.2\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(b-c\right)}\int _{{0}}^{{1}}\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,c,zt\right)t^{{c-1}}(1-t)^{{b-c-1}}dt,\realpart{b}>\realpart{c}>0,
13.4.3\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,-z\right)=\frac{z^{{\frac{1}{2}-\frac{1}{2}b}}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\int _{{0}}^{{\infty}}e^{{-t}}t^{{a-\frac{1}{2}b-\frac{1}{2}}}\mathop{J_{{b-1}}\/}\nolimits\!\left(2\sqrt{zt}\right)dt,\realpart{a}>0.

For the function \mathop{J_{{b-1}}\/}\nolimits see §10.2(ii).

13.4.4\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\int _{{0}}^{{\infty}}e^{{-zt}}t^{{a-1}}(1+t)^{{b-a-1}}dt,\realpart{a}>0, |\mathop{\mathrm{ph}\/}\nolimits{z}|<\frac{1}{2}\pi,
13.4.5\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{z^{{1-a}}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(1+a-b\right)}\int _{{0}}^{{\infty}}\frac{\mathop{U\/}\nolimits\!\left(b-a,b,t\right)e^{{-t}}t^{{a-1}}}{t+z}dt,|\mathop{\mathrm{ph}\/}\nolimits{z}|<\pi, \realpart{a}>\max\left(\realpart{b-1},0\right),
13.4.6\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{(-1)^{n}z^{{1-b-n}}}{\mathop{\Gamma\/}\nolimits\!\left(1+a-b\right)}\int _{0}^{\infty}\frac{\mathop{{\mathbf{M}}\/}\nolimits\!\left(b-a,b,t\right)e^{{-t}}t^{{b+n-1}}}{t+z}dt,\left|\mathop{\mathrm{ph}\/}\nolimits z\right|<\pi, n=0,1,2,\dots, -\realpart{b}<n<1+\realpart{(a-b)},
13.4.7\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{2z^{{\frac{1}{2}-\frac{1}{2}b}}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)}\*\int _{{0}}^{{\infty}}e^{{-t}}t^{{a-\frac{1}{2}b-\frac{1}{2}}}\mathop{K_{{b-1}}\/}\nolimits\!\left(2\sqrt{zt}\right)dt,\realpart{a}>\max\left(\realpart{b-1},0\right),
13.4.8\mathop{U\/}\nolimits\!\left(a,b,z\right)=z^{{c-a}}\*\int _{{0}}^{{\infty}}e^{{-zt}}t^{{c-1}}\mathop{{{}_{{2}}{\mathbf{F}}_{{1}}}\/}\nolimits\!\left(a,a-b+1;c;-t\right)dt,|\mathop{\mathrm{ph}\/}\nolimits{z}|<\frac{1}{2}\pi,

where c is arbitrary, \realpart{c}>0. For the functions \mathop{K_{{b-1}}\/}\nolimits and \mathop{{{}_{{2}}{\mathbf{F}}_{{1}}}\/}\nolimits see §10.25(ii) and §§15.1, 15.2(i).

§13.4(ii) Contour Integrals

See accompanying text
Figure 13.4.1: Contour of integration in (13.4.11). (Compare Figure 5.12.3.) Magnify
13.4.11\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right)=e^{{-b\pi i}}\mathop{\Gamma\/}\nolimits\!\left(1-a\right)\mathop{\Gamma\/}\nolimits\!\left(1+a-b\right)\*\frac{1}{4\pi^{2}}\int _{{\alpha}}^{{(0+,1+,0-,1-)}}e^{{zt}}t^{{a-1}}{(1-t)^{{b-a-1}}}dt,a,b-a\neq 1,2,3,\dots.

The contour of integration starts and terminates at a point \alpha on the real axis between 0 and 1. It encircles t=0 and t=1 once in the positive sense, and then once in the negative sense. See Figure 13.4.1. The fractional powers are continuous and assume their principal values at t=\alpha. Similar conventions also apply to the remaining integrals in this subsection.

13.4.12\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,c,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(b\right)}{2\pi i}z^{{1-b}}\int _{{-\infty}}^{{(0+,1+)}}e^{{zt}}t^{{-b}}\mathop{{{}_{{2}}{\mathbf{F}}_{{1}}}\/}\nolimits\!\left(a,b;c;\ifrac{1}{t}\right)dt,b\neq 0,-1,-2,\dots, \left|\mathop{\mathrm{ph}\/}\nolimits z\right|<\frac{1}{2}\pi.

At the point where the contour crosses the interval (1,\infty), t^{{-b}} and the \mathop{{{}_{{2}}{\mathbf{F}}_{{1}}}\/}\nolimits function assume their principal values; compare §§15.1 and 15.2(i). A special case is

13.4.13\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right)=\frac{z^{{1-b}}}{2\pi i}\int _{{-\infty}}^{{(0+,1+)}}e^{{zt}}t^{{-b}}\!\left(1-\frac{1}{t}\right)^{{-a}}dt,|\mathop{\mathrm{ph}\/}\nolimits{z}|<\frac{1}{2}\pi.
13.4.14\mathop{U\/}\nolimits\!\left(a,b,z\right)=e^{{-a\pi i}}\frac{\mathop{\Gamma\/}\nolimits\!\left(1-a\right)}{2\pi i}\int _{{\infty}}^{{(0+)}}e^{{-zt}}t^{{a-1}}{(1+t)^{{b-a-1}}}dt,a\neq 1,2,3,\dots, \left|\mathop{\mathrm{ph}\/}\nolimits z\right|<\frac{1}{2}\pi.

The contour cuts the real axis between −1 and 0. At this point the fractional powers are determined by \mathop{\mathrm{ph}\/}\nolimits{t}=\pi and \mathop{\mathrm{ph}\/}\nolimits(1+t)=0.

Again, t^{{-c}} and the \mathop{{{}_{{2}}{\mathbf{F}}_{{1}}}\/}\nolimits function assume their principal values where the contour intersects the positive real axis.

§13.4(iii) Mellin–Barnes Integrals

If a\neq 0,-1,-2,\dots, then

13.4.16\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,-z\right)=\frac{1}{2\pi i\mathop{\Gamma\/}\nolimits\!\left(a\right)}\int _{{-i\infty}}^{{i\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a+t\right)\mathop{\Gamma\/}\nolimits\!\left(-t\right)}{\mathop{\Gamma\/}\nolimits\!\left(b+t\right)}z^{{t}}dt,|\mathop{\mathrm{ph}\/}\nolimits{z}|<\tfrac{1}{2}\pi,

where the contour of integration separates the poles of \mathop{\Gamma\/}\nolimits\!\left(a+t\right) from those of \mathop{\Gamma\/}\nolimits\!\left(-t\right).

If a and a-b+1\neq 0,-1,-2,\dots, then

13.4.17\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{z^{{-a}}}{2\pi i}\int _{{-i\infty}}^{{i\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a+t\right)\mathop{\Gamma\/}\nolimits\!\left(1+a-b+t\right)\mathop{\Gamma\/}\nolimits\!\left(-t\right)}{\mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(1+a-b\right)}z^{{-t}}dt,|\mathop{\mathrm{ph}\/}\nolimits{z}|<\tfrac{3}{2}\pi,

where the contour of integration separates the poles of \mathop{\Gamma\/}\nolimits\!\left(a+t\right)\mathop{\Gamma\/}\nolimits\!\left(1+a-b+t\right) from those of \mathop{\Gamma\/}\nolimits\!\left(-t\right).

13.4.18\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{z^{{1-b}}e^{{z}}}{2\pi i}\int _{{-i\infty}}^{{i\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(b-1+t\right)\mathop{\Gamma\/}\nolimits\!\left(t\right)}{\mathop{\Gamma\/}\nolimits\!\left(a+t\right)}z^{{-t}}dt,|\mathop{\mathrm{ph}\/}\nolimits{z}|<\tfrac{1}{2}\pi,

where the contour of integration passes all the poles of \mathop{\Gamma\/}\nolimits\!\left(b-1+t\right)\mathop{\Gamma\/}\nolimits\!\left(t\right) on the right-hand side.