-
J. P. M. Flude (1998)
The Edmonds asymptotic formulas for the
and
symbols,
J. Math. Phys. 39 (7), pp. 3906–3915.
-
FN (free Fortran library)
-
V. A. Fock (1965)
Electromagnetic Diffraction and Propagation Problems,
International Series of Monographs on Electromagnetic Waves,
Vol. 1, Pergamon Press, Oxford.
-
V. Fock (1945)
Diffraction of radio waves around the earth’s surface,
Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
-
A. S. Fokas and M. J. Ablowitz (1982)
On a unified approach to transformations and elementary solutions of Painlevé equations,
J. Math. Phys. 23 (11), pp. 2033–2042.
-
A. S. Fokas, B. Grammaticos and A. Ramani (1993)
From continuous to discrete Painlevé equations,
J. Math. Anal. Appl. 180 (2), pp. 342–360.
-
A. S. Fokas, A. R. Its and A. V. Kitaev (1991)
Discrete Painlevé equations and their appearance in quantum gravity,
Comm. Math. Phys. 142 (2), pp. 313–344.
-
A. S. Fokas, A. R. Its and X. Zhou (1992)
Continuous and Discrete Painlevé Equations,
in Painlevé Transcendents: Their Asymptotics and Physical Applications,
(P. Winternitz Ed.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
-
A. S. Fokas and Y. C. Yortsos (1981)
The transformation properties of the sixth Painlevé equation and one-parameter families of solutions,
Lett. Nuovo Cimento (2) 30 (17), pp. 539–544.
-
A. S. Fokas, A. R. Its, A. A. Kapaev and V. Yu. Novokshënov (2006)
Painlevé Transcendents: The Riemann-Hilbert Approach,
Mathematical Surveys and Monographs, Vol. 128, American Mathematical Society, Providence, RI.
-
K. W. Ford and J. A. Wheeler (1959a)
Semiclassical description of scattering,
Ann. Physics 7 (3), pp. 259–286.
-
K. W. Ford and J. A. Wheeler (1959b)
Application of semiclassical scattering analysis,
Ann. Physics 7 (3), pp. 287–322.
-
W. B. Ford (1960)
Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series,
Chelsea Publishing Co., New York.
-
B. Fornberg and J. A. C. Weideman (2011)
A numerical methodology for the Painlevé equations,
J. Comput. Phys. 230 (15), pp. 5957–5973.
-
P. J. Forrester and N. S. Witte (2001)
Application of the
-function theory of Painlevé equations to random matrices: PIV, PII and the GUE,
Comm. Math. Phys. 219 (2), pp. 357–398.
-
P. J. Forrester and N. S. Witte (2002)
Comm. Pure Appl. Math. 55 (6), pp. 679–727.
-
P. J. Forrester and N. S. Witte (2004)
Application of the
-function theory of Painlevé equations to random matrices:
, the JUE, CyUE, cJUE and scaled limits,
Nagoya Math. J. 174, pp. 29–114.
-
R. C. Forrey (1997)
Computing the hypergeometric function,
J. Comput. Phys. 137 (1), pp. 79–100.
-
T. Fort (1948)
Finite Differences and Difference Equations in the Real Domain,
Clarendon Press, Oxford.
-
L. Fox and I. B. Parker (1968)
Chebyshev Polynomials in Numerical Analysis,
Oxford University Press, London.
-
L. Fox (1960)
Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments,
National Physical Laboratory Mathematical Tables, Vol. 4.
Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
-
P. A. Fox, A. D. Hall and N. L. Schryer (1978)
The PORT mathematical subroutine library,
ACM Trans. Math. Software 4 (2), pp. 104–126.
-
C. H. Franke (1965)
Numerical evaluation of the elliptic integral of the third kind,
Math. Comp. 19 (91), pp. 494–496.
-
C. K. Frederickson and P. L. Marston (1992)
Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water,
J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
-
C. K. Frederickson and P. L. Marston (1994)
Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface,
J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
-
C. L. Frenzen and R. Wong (1985)
A note on asymptotic evaluation of some Hankel transforms,
Math. Comp. 45 (172), pp. 537–548.
-
C. L. Frenzen and R. Wong (1986)
Asymptotic expansions of the Lebesgue constants for Jacobi series,
Pacific J. Math. 122 (2), pp. 391–415.
-
C. L. Frenzen and R. Wong (1988)
Uniform asymptotic expansions of Laguerre polynomials,
SIAM J. Math. Anal. 19 (5), pp. 1232–1248.
-
C. L. Frenzen (1990)
Error bounds for a uniform asymptotic expansion of the Legendre function 
,
SIAM J. Math. Anal. 21 (2), pp. 523–535.
-
A. Fresnel (1818)
Mémoire sur la diffraction de la lumière,
Mém. de l’Académie des Sciences, pp. 247–382.
-
G. Freud (1976)
On the coefficients in the recursion formulae of orthogonal polynomials,
Proc. Roy. Irish Acad. Sect. A 76 (1), pp. 1–6.
-
B. D. Fried and S. D. Conte (1961)
The Plasma Dispersion Function: The Hilbert Transform of the Gaussian.,
Academic Press, London-New York.
-
B. R. Frieden (1971)
Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions,
in Progress in Optics,
Vol. 9, pp. 311–407.
-
F. G. Friedlander (1958)
Sound Pulses,
Cambridge University Press, Cambridge-New York.
-
F. N. Fritsch, R. E. Shafer and W. P. Crowley (1973)
Solution of the transcendental equation 
,
Comm. ACM 16 (2), pp. 123–124.
-
C. Fröberg (1955)
Numerical treatment of Coulomb wave functions,
Rev. Mod. Phys. 27 (4), pp. 399–411.
-
R. Fuchs (1907)
Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen,
Math. Ann. 63 (3), pp. 301–321.
-
Y. Fukui and T. Horiguchi (1992)
Characteristic values of the integral equation satisfied by the Mathieu functions and its application to a system with chirality-pair interaction on a one-dimensional lattice,
Phys. A 190 (3-4), pp. 346–362.
-
T. Fukushima (2010)
Fast computation of incomplete elliptic integral of first kind by half argument transformation,
Numer. Math. 116 (4), pp. 687–719.
-
T. Fukushima (2012)
Series expansions of symmetric elliptic integrals,
Math. Comp. 81 (278), pp. 957–990.
-
L. W. Fullerton and G. A. Rinker (1986)
Generalized Fermi-Dirac integrals—FD, FDG, FDH,
Comput. Phys. Comm. 39 (2), pp. 181–185.
-
L. W. Fullerton (1972)
Algorithm 435: Modified incomplete gamma function,
Comm. ACM 15 (11), pp. 993–995.
-
L. W. Fullerton (1977)
Portable Special Function Routines,
in Portability of Numerical Software (Oak Brook, Illinois, 1976),
Lecture Notes in Computer Science, Vol. 57, pp. 452–483.
-
Y. V. Fyodorov (2005)
Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond,
in Recent Perspectives in Random Matrix Theory and Number Theory,
London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.