25.5 Integral Representations25.7 Integrals

§25.6 Integer Arguments

Contents

§25.6(i) Function Values

25.6.1
\mathop{\zeta\/}\nolimits\!\left(0\right)=-\frac{1}{2},
\mathop{\zeta\/}\nolimits\!\left(2\right)=\frac{\pi^{2}}{6},
\mathop{\zeta\/}\nolimits\!\left(4\right)=\frac{\pi^{4}}{90},
\mathop{\zeta\/}\nolimits\!\left(6\right)=\frac{\pi^{6}}{945}.
25.6.2\mathop{\zeta\/}\nolimits\!\left(2n\right)=\frac{(2\pi)^{{2n}}}{2(2n)!}\left|\mathop{B_{{2n}}\/}\nolimits\right|,n=1,2,3,\dots.
25.6.3\mathop{\zeta\/}\nolimits\!\left(-n\right)=-\frac{\mathop{B_{{n+1}}\/}\nolimits}{n+1},n=1,2,3,\dots.
25.6.4\mathop{\zeta\/}\nolimits\!\left(-2n\right)=0,n=1,2,3,\dots.
25.6.5\mathop{\zeta\/}\nolimits\!\left(k+1\right)=\frac{1}{k!}\sum _{{n_{1}=1}}^{\infty}\dots\sum _{{n_{k}=1}}^{\infty}\frac{1}{n_{1}\cdots n_{k}(n_{1}+\dots+n_{k})},k=1,2,3,\dots.
25.6.6\mathop{\zeta\/}\nolimits\!\left(2k+1\right)=\frac{(-1)^{{k+1}}(2\pi)^{{2k+1}}}{2(2k+1)!}\int _{0}^{1}\mathop{B_{{2k+1}}\/}\nolimits\!\left(t\right)\mathop{\cot\/}\nolimits\!\left(\pi t\right)dt,k=1,2,3,\dots.

§25.6(iii) Recursion Formulas

For related results see Basu and Apostol (2000).