35.1 Special Notation35.3 Multivariate Gamma and Beta Functions

§35.2 Laplace Transform

Definition

For any complex symmetric matrix \mathbf{Z},

35.2.1g(\mathbf{Z})=\int _{{\boldsymbol{\Omega}}}\mathop{\mathrm{etr}\/}\nolimits\!\left(-\mathbf{Z}\mathbf{X}\right)f(\mathbf{X})d\mathbf{X},

where the integration variable \mathbf{X} ranges over the space {\boldsymbol{\Omega}}.

Suppose there exists a constant \mathbf{X}_{0}\in{\boldsymbol{\Omega}} such that |f(\mathbf{X})|<\mathop{\mathrm{etr}\/}\nolimits\!\left(-\mathbf{X}_{0}\mathbf{X}\right) for all \mathbf{X}\in{\boldsymbol{\Omega}}. Then (35.2.1) converges absolutely on the region \realpart{(\mathbf{Z})}>\mathbf{X}_{0}, and g(\mathbf{Z}) is a complex analytic function of all elements z_{{j,k}} of \mathbf{Z}.

Inversion Formula

Assume that \int _{{\boldsymbol{\mathcal{S}}}}\left|g(\mathbf{Z})\right|d\mathbf{V} converges, and also that \lim _{{\mathbf{U}\to\infty}}\int _{{\boldsymbol{\mathcal{S}}}}\left|g(\mathbf{Z})\right|d\mathbf{V}=0. Then

35.2.2f(\mathbf{X})=\dfrac{1}{(2\pi i)^{{m(m+1)/2}}}\int\mathop{\mathrm{etr}\/}\nolimits\!\left(\mathbf{Z}\mathbf{X}\right)g(\mathbf{Z})d\mathbf{Z},

where the integral is taken over all \mathbf{Z}=\mathbf{U}+i\mathbf{V} such that \mathbf{U}>\mathbf{X}_{0} and \mathbf{V} ranges over \boldsymbol{\mathcal{S}}.

Convolution Theorem

If g_{j} is the Laplace transform of f_{j}, j=1,2, then g_{1}g_{2} is the Laplace transform of the convolution f_{1}*f_{2}, where

35.2.3f_{1}*f_{2}(\mathbf{T})=\int\limits _{{\boldsymbol{{0}}<\mathbf{X}<\mathbf{T}}}f_{1}(\mathbf{T}-\mathbf{X})f_{2}(\mathbf{X})d\mathbf{X}.