Notations ONotations Q
Notations P
*ABCDEFGHIJKLMNO♦P♦QRSTUVWXYZ
\mbox{P}_{{\mbox{\scriptsize I}}}, \mbox{P}_{{\mbox{\scriptsize II}}}, \mbox{P}_{{\mbox{\scriptsize III}}}, \mbox{P}^{{\prime}}_{{\mbox{\scriptsize III}}}, \mbox{P}_{{\mbox{\scriptsize IV}}}, \mbox{P}_{{\mbox{\scriptsize V}}}, \mbox{P}_{{\mbox{\scriptsize VI}}}
Painlevé transcendents; §32.2(i)
P(z)=\tfrac{1}{2}\mathop{\mathrm{erfc}\/}\nolimits\!\left(-z/\sqrt{2}\right)
alternative notation for the complementary error function; §7.1
(with \mathop{\mathrm{erfc}\/}\nolimits z: complementary error function)
\mathop{p\/}\nolimits\!\left(\mathrm{condition},n\right)
restricted number of partions of n; §26.10(i)
\mathop{P\/}\nolimits\!\begin{Bmatrix}\alpha&\beta&\gamma&\\
a_{1}&b_{1}&c_{1}&z\\
a_{2}&b_{2}&c_{2}&\end{Bmatrix}
Riemann’s \mathop{P\/}\nolimits-symbol for solutions of the generalized hypergeometric differential equation; (15.11.3)
\mathop{\wp\/}\nolimits\!\left(z\right) (= \mathop{\wp\/}\nolimits\!\left(z|\mathbb{L}\right) = \mathop{\wp\/}\nolimits\!\left(z;g_{2},g_{3}\right))
Weierstrass \mathop{\wp\/}\nolimits-function; (23.2.4)
\mathop{p\/}\nolimits\!\left(n\right)
total number of partitions of n; §26.2
P_{z}(a)=\mathop{\gamma\/}\nolimits\!\left(a,z\right)
notation used by Batchelder (1967, p. 63); §8.1
(with \mathop{\gamma\/}\nolimits\!\left(a,z\right): incomplete gamma function)
\mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right): \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) with \mu=0
; §14.1
\mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right): \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) with \mu=0
; §14.3(i)
\mathop{P_{{\nu}}\/}\nolimits\!\left(z\right): \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right) with \mu=0
; §14.1
\mathop{P_{{\nu}}\/}\nolimits\!\left(z\right): \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right) with \mu=0
; §14.3(ii)
\mathop{P_{{n}}\/}\nolimits\!\left(x\right)
Legendre polynomial; Table 18.3.1
\mathop{P_{{\nu}}\/}\nolimits\!\left(z\right): \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right) with \mu=0
; §14.21(i)
\mathop{p_{{k}}\/}\nolimits\!\left(n\right)
number of partitions of n into at most k parts; §26.9(i)
\mathrm{P}_{\nu}^{\mu}(x)=\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)
notation used by Erdélyi et al. (1953a), Olver (1997b); §14.1
(with \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right): Ferrers function of the first kind)
\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)
Ferrers function of the first kind; (14.3.1)
\mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
associated Legendre function of the first kind; (14.3.6)
\mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
associated Legendre function of the first kind; §14.21(i)
\mathop{P^{{*}}_{{n}}\/}\nolimits\!\left(x\right)
shifted Legendre polynomial; Table 18.3.1
P_{{\nu}}^{{\mu}}(x)=\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)
notation used by Magnus et al. (1966); §14.1
(with \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right): Ferrers function of the first kind)
\mathfrak{P}_{{\nu}}^{{\mu}}(z)=\mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
notation used by Magnus et al. (1966); §14.1
(with \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right): associated Legendre function of the first kind)
P_{n}^{{(\lambda)}}(x)=\mathop{C^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x\right)
notation used by Szegö (1975, §4.7); §18.1(iii)
(with \mathop{C^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x\right): ultraspherical (or Gegenbauer) polynomial)
\mathop{P^{{(\alpha,\beta)}}_{{n}}\/}\nolimits\!\left(x\right)
Jacobi polynomial; Table 18.3.1
\mathop{\mathsf{P}^{{-\mu}}_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right)
conical function; §14.20(i)
\mathop{P\/}\nolimits\!\left(a,z\right)
normalized incomplete gamma function; (8.2.4)
\mathop{\wp\/}\nolimits\!\left(z|\mathbb{L}\right)
Weierstrass \mathop{\wp\/}\nolimits-function; §23.1
P_{\ell}(\epsilon,r)=(2\ell+1)!\mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right)/2^{{\ell+1}}
notation used by Curtis (1964a); §33.1
(with \mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right): regular Coulomb function and !: n!: factorial)
\Pi _{1}(\nu,k)=\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)
notation used by Erdélyi et al. (1953b, Chapter 13); §19.1
(with \mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right): Legendre’s complete elliptic integral of the third kind)
\mathop{P_{{n}}\/}\nolimits\!\left(x;c\right)
associated Legendre polynomial; (18.30.6)
\mathop{p_{{k}}\/}\nolimits\!\left(\mathcal{D},n\right)
number of partitions of n into at most k distinct parts; §26.10(i)
\mathop{p_{{k}}\/}\nolimits\!\left(\leq m,n\right)
number of partitions of n into at most k parts, each less than or equal to m; §26.9(i)
\mathop{P^{{(\alpha,\beta)}}_{{n}}\/}\nolimits\!\left(x;c\right)
associated Jacobi polynomial; (18.30.4)
\mathop{P^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x;\phi\right)
Meixner–Pollaczek polynomial; §18.19
\mathop{P^{{\alpha,\beta,\gamma}}_{{m,n}}\/}\nolimits\!\left(x,y\right)
triangle polynomial; (18.37.7)
\Pi(n;\phi\backslash\alpha)=\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right): Legendre’s incomplete elliptic integral of the third kind)
\mathop{\wp\/}\nolimits\!\left(z;g_{2},g_{3}\right)
Weierstrass \mathop{\wp\/}\nolimits-function; (23.3.8)
\mathop{P^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x;a,b\right)
Pollaczek polynomial; (18.35.4)
\mathop{p_{{n}}\/}\nolimits\!\left(x;a,b;q\right)
little q-Jacobi polynomial; (18.27.13)
\mathop{P^{{(\alpha,\beta)}}_{{n}}\/}\nolimits\!\left(x;c,d;q\right)
big q-Jacobi polynomial; (18.27.6)
\mathop{p_{{n}}\/}\nolimits\!\left(x;a,b,\conj{a},\conj{b}\right)
continuous Hahn polynomial; §18.19
\mathop{P_{{n}}\/}\nolimits\!\left(x;a,b,c;q\right)
big q-Jacobi polynomial; (18.27.5)
\mathop{p_{{n}}\/}\nolimits\!\left(x;a,b,c,d\,|\, q\right)
Askey–Wilson polynomial; (18.28.1)
\mathop{\mathrm{ph}\/}\nolimits
phase; (1.9.7)
\mathop{\phi\/}\nolimits\!\left(z\right)
Airy phase function; §9.8(i)
\Phi(z)=\tfrac{1}{2}\mathop{\mathrm{erfc}\/}\nolimits\!\left(-z/\sqrt{2}\right)
alternative notation for the complementary error function; §7.1
(with \mathop{\mathrm{erfc}\/}\nolimits z: complementary error function)
\mathop{\phi\/}\nolimits\!\left(n\right)
Euler’s totient; (27.2.7)
\mathop{\phi _{{\nu}}\/}\nolimits\!\left(x\right)
phase of derivatives of Bessel functions; (10.18.3)
\mathop{\Phi _{{1}}\/}\nolimits\!\left(t;\mathbf{x}\right)
fold catastrophe; (36.2.1)
\mathop{\Phi _{{2}}\/}\nolimits\!\left(t;\mathbf{x}\right)
cusp catastrophe; (36.2.1)
\mathop{\Phi _{{3}}\/}\nolimits\!\left(t;\mathbf{x}\right)
swallowtail catastrophe; (36.2.1)
\mathop{\Phi _{{K}}\/}\nolimits\!\left(t;\mathbf{x}\right)
cuspoid catastrophe; (36.2.1)
\mathop{\phi _{{k}}\/}\nolimits\!\left(n\right)
sum of powers of integers relatively prime to n; (27.2.6)
\mathop{\phi^{{(\alpha,\beta)}}_{{\lambda}}\/}\nolimits\!\left(t\right)
Jacobi function; (15.9.11)
\mathop{\phi\/}\nolimits\!\left(z,s\right)=\mathop{\mathrm{Li}_{{s}}\/}\nolimits\!\left(z\right)
notation used by (Truesdell, 1945); §25.12(ii)
(with \mathop{\mathrm{Li}_{{s}}\/}\nolimits\!\left(z\right): polylogarithm)
\mathop{\varphi _{{n,m}}\/}\nolimits\!\left(z,q\right)
combined theta function; §20.11(v)
\mathop{\Phi^{{(\mathrm{E})}}\/}\nolimits\!\left(s,t;\mathbf{x}\right)
elliptic umbilic catastrophe; (36.2.2)
\mathop{\Phi^{{(\mathrm{H})}}\/}\nolimits\!\left(s,t;\mathbf{x}\right)
hyperbolic umbilic catastrophe; (36.2.3)
\mathop{\phi\/}\nolimits\!\left(\rho,\beta;z\right)
generalized Bessel function; (10.46.1)
\Phi(a;b;z)=\mathop{M\/}\nolimits\!\left(a,b,z\right)
notation used by Humbert (1920); §13.1
(with \mathop{M\/}\nolimits\!\left(a,b,z\right): Kummer confluent hypergeometric function)
\mathop{\Phi\/}\nolimits\!\left(z,s,a\right)
Lerch’s transcendent; (25.14.1)
\mathop{\Phi^{{(1)}}\/}\nolimits\!\left(a;b,b^{{\prime}};c;x,y\right)
first q-Appell function; (17.4.5)
\mathop{\Phi^{{(2)}}\/}\nolimits\!\left(a;b,b^{{\prime}};c,c^{{\prime}};x,y\right)
second q-Appell function; (17.4.6)
\mathop{\Phi^{{(3)}}\/}\nolimits\!\left(a,a^{{\prime}};b,b^{{\prime}};c;x,y\right)
third q-Appell function; (17.4.7)
\mathop{\Phi^{{(4)}}\/}\nolimits\!\left(a;b;c,c^{{\prime}};x,y\right)
fourth q-Appell function; (17.4.8)
\mathop{{{}_{{r+1}}\phi _{{s}}}\/}\nolimits\!\left({a_{0},a_{1},\dots,a_{r}\atop b_{1},b_{2},\dots,b_{s}};q,z\right)
basic hypergeometric (or q-hypergeometric) function; (17.4.1)
\mathop{{{}_{{r+1}}\phi _{{s}}}\/}\nolimits\!\left(a_{0},a_{1},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)
basic hypergeometric (or q-hypergeometric) function; (17.4.1)
\pi
set of plane partitions; §26.12(i)
\Pi(z-1)=\mathop{\Gamma\/}\nolimits\!\left(z\right)
notation used by Gauss; §5.1
(with \mathop{\Gamma\/}\nolimits\!\left(z\right): gamma function)
\mathop{\pi\/}\nolimits\!\left(x\right)
number of primes not exceeding x; (27.2.2)
\Pi _{m}(a)=\mathop{\Gamma _{{m}}\/}\nolimits\!\left(a+\tfrac{1}{2}(m+1)\right)
notation used by Herz (1955, p. 480); §35.1
(with \mathop{\Gamma _{{m}}\/}\nolimits\!\left(a\right): multivariate gamma function)
\Pi(n\backslash\alpha)=\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with \mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right): Legendre’s complete elliptic integral of the third kind)
\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)
Legendre’s complete elliptic integral of the third kind; (19.2.8)
\Pi(\phi,\nu,k)=\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)
notation used by Erdélyi et al. (1953b, Chapter 13); §19.1
(with \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right): Legendre’s incomplete elliptic integral of the third kind)
\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)
Legendre’s incomplete elliptic integral of the third kind; (19.2.7)
\mathop{\mathit{pp}\/}\nolimits\!\left(n\right)
number of plane partitions of n; §26.12(i)
\mathop{\mathrm{pq}\/}\nolimits\left(z,k\right)
generic Jacobian elliptic function; (22.2.10)
\mathop{\mathit{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right)
spheroidal wave function of complex argument; §30.6
\mathrm{Ps}^{{m}}_{{n}}(z,\gamma^{2})=\mathop{\mathit{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right)
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of complex argument; §30.1
(with \mathop{\mathit{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right): spheroidal wave function of complex argument)
\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)
spheroidal wave function of the first kind; §30.4(i)
\mathrm{ps}^{{m}}_{{n}}(x,\gamma^{2})=\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of the first kind; §30.1
(with \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right): spheroidal wave function of the first kind)
\mathop{\psi\/}\nolimits\!\left(x\right)
Chebyshev \mathop{\psi\/}\nolimits-function; (25.16.1)
\Psi(z)=\mathop{\psi\/}\nolimits\!\left(z\right)
notation used by Davis (1933); §5.1
(with \mathop{\psi\/}\nolimits\!\left(z\right): psi (or digamma) function)
\Psi(z-1)=\mathop{\psi\/}\nolimits\!\left(z\right)
notation used by Gauss, Jahnke and Emde (1945); §5.1
(with \mathop{\psi\/}\nolimits\!\left(z\right): psi (or digamma) function)
\mathop{\psi\/}\nolimits\!\left(z\right)
psi (or digamma) function; (5.2.2)
\mathop{\Psi _{{2}}\/}\nolimits\!\left(\mathbf{x}\right)
Pearcey integral; (36.2.14)
\mathop{\Psi _{{K}}\/}\nolimits\!\left(\mathbf{x}\right)
canonical integral; (36.2.4)
\mathop{\psi^{{(n)}}\/}\nolimits\!\left(z\right)
polygamma functions; §5.15
\mathop{\Psi^{{(\mathrm{E})}}\/}\nolimits\!\left(\mathbf{x}\right)
canonical integral; (36.2.6)
\mathop{\Psi^{{(\mathrm{H})}}\/}\nolimits\!\left(\mathbf{x}\right)
canonical integral; (36.2.8)
\mathop{\Psi^{{(\mathrm{U})}}\/}\nolimits\!\left(\mathbf{x}\right)
canonical umbilic integral; (36.2.5)
\mathop{\Psi _{{3}}\/}\nolimits\!(\mathbf{x};k)
swallowtail canonical integral function; (36.2.10)
\mathop{\Psi _{{3}}\/}\nolimits\!(\mathbf{x};k)
swallowtail canonical integral function; §36.3(i)
\mathop{\Psi _{{K}}\/}\nolimits\!(\mathbf{x};k)
diffraction catastrophe; (36.2.10)
\mathop{\Psi^{{(\mathrm{E})}}\/}\nolimits\!(\mathbf{x};k)
elliptic umbilic canonical integral function; §36.3(ii)
\mathop{\Psi^{{(\mathrm{E})}}\/}\nolimits\!(\mathbf{x};k)
elliptic umbilic canonical integral function; (36.2.11)
\mathop{\Psi^{{(\mathrm{E})}}\/}\nolimits\!(\mathbf{x};k)
elliptic umbilic canonical integral function; §36.3(i)
\mathop{\Psi^{{(\mathrm{H})}}\/}\nolimits\!(\mathbf{x};k)
hyperbolic umbilic canonical integral function; §36.3(i)
\mathop{\Psi^{{(\mathrm{H})}}\/}\nolimits\!(\mathbf{x};k)
hyperbolic umbilic canonical integral function; §36.3(ii)
\mathop{\Psi^{{(\mathrm{H})}}\/}\nolimits\!(\mathbf{x};k)
hyperbolic umbilic canonical integral function; (36.2.11)
\mathop{\Psi^{{(\mathrm{U})}}\/}\nolimits\!(\mathbf{x};k)
umbilic canonical integral function; (36.2.11)
\Psi(a;b;z)=\mathop{U\/}\nolimits\!\left(a,b,z\right)
notation used by Erdélyi et al. (1953a, §6.5); §13.1
(with \mathop{U\/}\nolimits\!\left(a,b,z\right): Kummer confluent hypergeometric function)
\mathop{\Psi\/}\nolimits\!\left(a;b;\mathbf{T}\right)
confluent hypergeometric function of matrix argument (second kind); (35.6.2)
\mathop{\Psi\/}\nolimits\!\left(a;b;\mathbf{T}\right)
confluent hypergeometric function of matrix argument (second kind); §35.1
\mathop{{{}_{{r}}\psi _{{s}}}\/}\nolimits\!\left({a_{1},a_{2},\dots,a_{r}\atop b_{1},b_{2},\dots,b_{s}};q,z\right)
bilateral basic hypergeometric (or bilateral q-hypergeometric) function; (17.4.3)
\mathop{{{}_{{r}}\psi _{{s}}}\/}\nolimits\!\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)
bilateral basic hypergeometric (or bilateral q-hypergeometric) function; (17.4.3)