20.4 Values at z = 020.6 Power Series

§20.5 Infinite Products and Related Results

Contents

§20.5(i) Single Products

Jacobi’s Triple Product

20.5.9\mathop{\theta _{{3}}\/}\nolimits\!\left(\pi z\middle|\tau\right)=\sum _{{n=-\infty}}^{{\infty}}p^{{2n}}q^{{n^{2}}}\\
=\prod _{{n=1}}^{{\infty}}\left(1-q^{{2n}}\right)\left(1+q^{{2n-1}}p^{2}\right)\left(1+q^{{2n-1}}p^{{-2}}\right),

where p=e^{{i\pi z}}, q=e^{{i\pi\tau}}.

§20.5(ii) Logarithmic Derivatives

When \left|\imagpart{z}\right|<\pi\imagpart{\tau},

20.5.10\frac{{\mathop{\theta _{{1}}\/}\nolimits^{{\prime}}}\!\left(z,q\right)}{\mathop{\theta _{{1}}\/}\nolimits\!\left(z,q\right)}-\mathop{\cot\/}\nolimits z=4\mathop{\sin\/}\nolimits\!\left(2z\right)\sum _{{n=1}}^{{\infty}}\frac{q^{{2n}}}{1-2q^{{2n}}\mathop{\cos\/}\nolimits\!\left(2z\right)+q^{{4n}}}=4\sum _{{n=1}}^{{\infty}}\frac{q^{{2n}}}{1-q^{{2n}}}\mathop{\sin\/}\nolimits\!\left(2nz\right),
20.5.11\frac{{\mathop{\theta _{{2}}\/}\nolimits^{{\prime}}}\!\left(z,q\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(z,q\right)}+\mathop{\tan\/}\nolimits z=-4\mathop{\sin\/}\nolimits\!\left(2z\right)\sum _{{n=1}}^{{\infty}}\frac{q^{{2n}}}{1+2q^{{2n}}\mathop{\cos\/}\nolimits\!\left(2z\right)+q^{{4n}}}=4\sum _{{n=1}}^{{\infty}}(-1)^{n}\frac{q^{{2n}}}{1-q^{{2n}}}\mathop{\sin\/}\nolimits\!\left(2nz\right).

The left-hand sides of (20.5.10) and (20.5.11) are replaced by their limiting values when \mathop{\cot\/}\nolimits z or \mathop{\tan\/}\nolimits z are undefined.

When \left|\imagpart{z}\right|<\tfrac{1}{2}\pi\imagpart{\tau},

20.5.12\frac{{\mathop{\theta _{{3}}\/}\nolimits^{{\prime}}}\!\left(z,q\right)}{\mathop{\theta _{{3}}\/}\nolimits\!\left(z,q\right)}=-4\mathop{\sin\/}\nolimits\!\left(2z\right)\sum _{{n=1}}^{{\infty}}\frac{q^{{2n-1}}}{1+2q^{{2n-1}}\mathop{\cos\/}\nolimits\!\left(2z\right)+q^{{4n-2}}}=4\sum _{{n=1}}^{{\infty}}(-1)^{n}\frac{q^{n}}{1-q^{{2n}}}\mathop{\sin\/}\nolimits\!\left(2nz\right),
20.5.13\frac{{\mathop{\theta _{{4}}\/}\nolimits^{{\prime}}}\!\left(z,q\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(z,q\right)}=4\mathop{\sin\/}\nolimits\!\left(2z\right)\sum _{{n=1}}^{{\infty}}\frac{q^{{2n-1}}}{1-2q^{{2n-1}}\mathop{\cos\/}\nolimits\!\left(2z\right)+q^{{4n-2}}}=4\sum _{{n=1}}^{{\infty}}\frac{q^{n}}{1-q^{{2n}}}\mathop{\sin\/}\nolimits\!\left(2nz\right).

With the given conditions the infinite series in (20.5.10)–(20.5.13) converge absolutely and uniformly in compact sets in the z-plane.

§20.5(iii) Double Products

These double products are not absolutely convergent; hence the order of the limits is important. The order shown is in accordance with the Eisenstein convention (Walker (1996, §0.3)).