What's New
About the Project
NIST
Bibliography

Bibliography P

ABCDEFGHIJKLMNO♦P♦QRSTUVWXYZ
  • K. A. Paciorek (1970) Algorithm 385: Exponential integral Ei(x), Comm. ACM 13 (7), pp. 446–447.
  • V. I. Pagurova (1961) Tables of the Exponential Integral Eν(x)=1e-xuu-νdu, Pergamon Press, New York.
  • V. I. Pagurova (1963) Tablitsy nepolnoi gamma-funktsii, Vyčisl. Centr Akad. Nauk SSSR, Moscow (Russian).
  • V. I. Pagurova (1965) An asymptotic formula for the incomplete gamma function, Ž. Vyčisl. Mat. i Mat. Fiz. 5, pp. 118–121 (Russian).
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès, C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions, in Tracts for Computers, No. 1,
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions, Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • D. J. Panow (1955) Formelsammlung zur numerischen Behandlung partieller Differentialgleichungen nach dem Differenzenverfahren, Akademie-Verlag, Berlin (German).
  • A. Papoulis (1977) Signal Analysis, McGraw-Hill, New York.
  • PARI-GP (free interactive system and C library)
  • R. B. Paris and S. Cang (1997) An asymptotic representation for ζ(12+it), Methods Appl. Anal. 4 (4), pp. 449–470.
  • R. B. Paris and D. Kaminski (2001) Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, Cambridge.
  • R. B. Paris and W. N.-C. Sy (1983) Influence of equilibrium shear flow along the magnetic field on the resistive tearing instability, Phys. Fluids 26 (10), pp. 2966–2975.
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified, Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • R. B. Paris (1984) An inequality for the Bessel function Jν(νx), SIAM J. Math. Anal. 15 (1), pp. 203–205.
  • R. B. Paris (1991) The asymptotic behaviour of Pearcey’s integral for complex variables, Proc. Roy. Soc. London Ser. A 432, pp. 391–426.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations, Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals, J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • R. B. Paris (2001a) On the use of Hadamard expansions in hyperasymptotic evaluation. I. Real variables, Proc. Roy. Soc. London Ser. A 457 (2016), pp. 2835–2853.
  • R. B. Paris (2001b) On the use of Hadamard expansions in hyperasymptotic evaluation. II. Complex variables, Proc. Roy. Soc. London Ser. A 457, pp. 2855–2869.
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function, J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function, J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • R. B. Paris (2002c) Exponential asymptotics of the Mittag-Leffler function, Proc. Roy. Soc. London Ser. A 458, pp. 3041–3052.
  • R. B. Paris (2003) The asymptotic expansion of a generalised incomplete gamma function, J. Comput. Appl. Math. 151 (2), pp. 297–306.
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument, Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. B. Paris (2005a) A Kummer-type transformation for a F22 hypergeometric function, J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • R. B. Paris (2005b) The Stokes phenomenon associated with the Hurwitz zeta function ζ(s,a), Proc. Roy. Soc. London Ser. A 461, pp. 297–304.
  • G. Parisi (1988) Statistical Field Theory, Addison-Wesley, Reading, MA.
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12, in Selected Tables in Mathematical Statistics, (D. B. Owen Ed.), Vol. 2, pp. 199–388.
  • J. B. Parkinson (1969) Optical properties of layer antiferromagnets with K2NiF4 structure, J. Phys. C: Solid State Physics 2 (11), pp. 2012–2021.
  • R. Parnes (1972) Complex zeros of the modified Bessel function Kn(Z), Math. Comp. 26 (120), pp. 949–953.
  • P. I. Pastro (1985) Orthogonal polynomials and some q-beta integrals of Ramanujan, J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • S. Paszkowski (1988) Evaluation of Fermi-Dirac Integral, in Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), Mathematics and Its Applications, Vol. 43, pp. 435–444.
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order, Zastos. Mat. 21 (2), pp. 289–301.
  • J. K. Patel and C. B. Read (1982) Handbook of the Normal Distribution, Statistics: Textbooks and Monographs, Vol. 40, Marcel Dekker Inc., New York.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials, J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • A. R. Paterson (1983) A First Course in Fluid Dynamics, Cambridge University Press, Cambridge.
  • F. A. Paxton and J. E. Rollin (1959) Tables of the Incomplete Elliptic Integrals of the First and Third Kind, Technical report Curtiss-Wright Corp., Research Division, Quehanna, PA.
  • T. Pearcey (1946) The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Philos. Mag. (7) 37, pp. 311–317.
  • K. Pearson (Ed.) (1965) Tables of the Incomplete Γ-function, Biometrika Office, Cambridge University Press, Cambridge.
  • K. Pearson (Ed.) (1968) Tables of the Incomplete Beta-function, 2nd edition, Published for the Biometrika Trustees at the Cambridge University Press, Cambridge.
  • T. G. Pedersen (2003) Variational approach to excitons in carbon nanotubes, Phys. Rev. B 67 (7), pp. (073401–1)–(073401–4).
  • W. F. Perger, A. Bhalla and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series, Comput. Phys. Comm. 77 (2), pp. 249–254.
  • M. D. Perlman and I. Olkin (1980) Unbiasedness of invariant tests for MANOVA and other multivariate problems, Ann. Statist. 8 (6), pp. 1326–1341.