What's New
About the Project
NIST
Bibliography

Bibliography H

ABCDEFG♦H♦IJKLMNOPQRSTUVWXYZ
  • L. Habsieger (1986) La q-conjecture de Macdonald-Morris pour G2. C. R. Acad. Sci. Paris Sér. I Math. 303 (6), pp. 211–213 (French).
  • L. Habsieger (1988) Une q-intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • P. I. Hadži (1968) Computation of certain integrals that contain a probability function.. Bul. Akad. Štiince RSS Moldoven 1968 (2), pp. 81–104. (errata insert) (Russian).
  • P. I. Hadži (1969) Certain integrals that contain a probability function and degenerate hypergeometric functions. Bul. Akad. S̆tiince RSS Moldoven 1969 (2), pp. 40–47 (Russian).
  • P. I. Hadži (1970) Some integrals that contain a probability function and hypergeometric functions. Bul. Akad. Štiince RSS Moldoven 1970 (1), pp. 49–62 (Russian).
  • P. I. Hadži (1972) Certain sums that contain cylindrical functions. Bul. Akad. Štiince RSS Moldoven. 1972 (3), pp. 75–77, 94 (Russian).
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • P. I. Hadži (1975b) Integrals containing the Fresnel functions S(x) and C(x). Bul. Akad. Štiince RSS Moldoven. 1975 (3), pp. 48–60, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • E. Hahn (1980) Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171 (3), pp. 201–226 (German).
  • W. Hahn (1949) Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr. 2, pp. 4–34 (German).
  • E. Hairer, S. P. Nørsett and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • E. Hairer, S. P. Nørsett and G. Wanner (2000) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer-Verlag, Berlin.
  • E. Hairer and G. Wanner (1996) Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 14, Springer-Verlag, Berlin.
  • R. L. Hall, N. Saad and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (Art. ID 022107, 19 pages).
  • M. H. Halley, D. Delande and K. T. Taylor (1993) The combination of R-matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • A. J. S. Hamilton (2001) Formulae for growth factors in expanding universes containing matter and a cosmological constant. Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • J. Hammack, D. McCallister, N. Scheffner and H. Segur (1995) Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.
  • J. Hammack, N. Scheffner and H. Segur (1989) Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, pp. 567–589.
  • H. Hancock (1958) Elliptic Integrals. Dover Publications Inc., New York.
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • R. A. Handelsman and J. S. Lew (1971) Asymptotic expansion of a class of integral transforms with algebraically dominated kernels. J. Math. Anal. Appl. 35 (2), pp. 405–433.
  • S. Hanish, R. V. Baier, A. L. Van Buren and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m=0,1,2; Vols. 4-6, Oblate, m=0,1,2. Technical report Naval Research Laboratory, Washington, D.C..
  • E. R. Hansen (1975) A Table of Series and Products. Prentice-Hall, Englewood Cliffs, NJ.
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • J. Happel and H. Brenner (1973) Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. 2nd edition, Noordhoff International Publishing, Leyden.
  • G. H. Hardy, J. E. Littlewood and G. Pólya (1967) Inequalities. 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
  • G. H. Hardy and J. E. Littlewood (1925) Some problems of “Partitio Numerorum” (VI): Further researches in Waring’s Problem. Math. Z. 23, pp. 1–37.
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • G. H. Hardy and E. M. Wright (1979) An Introduction to the Theory of Numbers. 5th edition, The Clarendon Press Oxford University Press, New York-Oxford.
  • G. H. Hardy (1912) Note on Dr. Vacca’s series for γ. Quart. J. Math. 43, pp. 215–216.
  • G. H. Hardy (1940) Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Cambridge University Press, Cambridge, England.
  • G. H. Hardy (1949) Divergent Series. Clarendon Press, Oxford.
  • G. H. Hardy (1952) A Course of Pure Mathematics. 10th edition, Cambridge University Press.
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • F. E. Harris (2002) Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion. Internat. J. Quantum Chem. 88 (6), pp. 701–734.
  • J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. G. Thacher, Jr. and C. Witzgall (1968) Computer Approximations. SIAM Ser. in Appl. Math., John Wiley & Sons Inc., New York.
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • Harvard University (1945) Tables of the Modified Hankel Functions of Order One-Third and of their Derivatives. Harvard University Press, Cambridge, MA.
  • A. Hasegawa (1989) Optical Solitons in Fibers. Springer-Verlag, Berlin, Germany.
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • C. Hastings (1955) Approximations for Digital Computers. Princeton University Press, Princeton, N. J..
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • H. J. Haubold, A. M. Mathai and R. K. Saxena (2011) Mittag-Leffler functions and their applications. J. Appl. Math. (Art. ID 298628, 51 pages).
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ(2m+1). Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. in P.L. Butzer, H. Th. Jongen and W. Oberschelp (Eds.), Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), pp. 361–375.
  • B. Hayes (2009) The higher arithmetic. American Scientist 97, pp. 364–368.
  • V. B. Headley and V. K. Barwell (1975) On the distribution of the zeros of generalized Airy functions. Math. Comp. 29 (131), pp. 863–877.
  • G. J. Heckman (1991) An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math. 103 (2), pp. 341–350.
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • R. S. Heller (1976) 25D Table of the First One Hundred Values of j0,s,J1(j0,s), j1,s,J0(j1,s)=J0(j0,s+1),j1,s,J1(j1,s). Technical report Department of Physics, Worcester Polytechnic Institute, Worcester, MA.
  • E. Hendriksen and H. van Rossum (1986) Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48 (1), pp. 17–36.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • P. Henrici (1977) Applied and Computational Complex Analysis. Vol. 2: Special Functions—Integral Transforms—Asymptotics—Continued Fractions. Wiley-Interscience [John Wiley & Sons], New York.
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • C. S. Herz (1955) Bessel functions of matrix argument. Ann. of Math. (2) 61 (3), pp. 474–523.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • D. Hilbert (1909) Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 17–36 (German).
  • F. B. Hildebrand (1974) Introduction to Numerical Analysis. 2nd edition, McGraw-Hill Book Co., New York.
  • C. J. Hill (1828) Über die Integration logarithmisch-rationaler Differentiale. J. Reine Angew. Math. 3, pp. 101–159.
  • G. W. Hill and A. W. Davis (1973) Algorithm 442: Normal deviate. Comm. ACM 16 (1), pp. 51–52.
  • G. W. Hill (1970) Algorithm 395: Student’s t-distribution. Comm. ACM 13 (10), pp. 617–619.
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I1(x)/I0(x), I1.5(x)/I0.5(x) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • I. D. Hill (1973) Algorithm AS66: The normal integral. Appl. Statist. 22 (3), pp. 424–427.
  • E. Hille (1929) Note on some hypergeometric series of higher order. J. London Math. Soc. 4, pp. 50–54.
  • E. Hille (1976) Ordinary Differential Equations in the Complex Domain. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • P. Hillion (1997) Diffraction and Weber functions. SIAM J. Appl. Math. 57 (6), pp. 1702–1715.
  • M. H. Hirata (1975) Flow near the bow of a steadily turning ship. J. Fluid Mech. 71 (2), pp. 283–291.
  • N. J. Hitchin (1995) Poncelet Polygons and the Painlevé Equations. in Ramanan (Ed.), Geometry and Analysis (Bombay, 1992), pp. 151–185.
  • N. J. Hitchin (2003) A lecture on the octahedron. Bull. London Math. Soc. 35 (5), pp. 577–600.
  • M. Hiyama and H. Nakamura (1997) Two-center Coulomb functions. Comput. Phys. Comm. 103 (2-3), pp. 209–216.
  • E. W. Hobson (1928) A Treatise on Plane and Advanced Trigonometry. 7th edition, Cambridge University Press.
  • E. W. Hobson (1931) The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, London-New York.
  • H. Hochstadt (1963) Estimates of the stability intervals for Hill’s equation. Proc. Amer. Math. Soc. 14 (6), pp. 930–932.
  • H. Hochstadt (1964) Differential Equations: A Modern Approach. Holt, Rinehart and Winston, New York.
  • H. Hochstadt (1971) The Functions of Mathematical Physics. Wiley-Interscience [John Wiley & Sons, Inc.], New York-London-Sydney.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • P. Holmes and D. Spence (1984) On a Painlevé-type boundary-value problem. Quart. J. Mech. Appl. Math. 37 (4), pp. 525–538.
  • E. Hopf (1934) Mathematical Problems of Radiative Equilibrium. Cambridge Tracts in Mathematics and Mathematical Physics No. 31, Cambridge University Press, Cambridge.
  • K. Horata (1989) An explicit formula for Bernoulli numbers. Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • F. T. Howard (1996b) Sums of powers of integers via generating functions. Fibonacci Quart. 34 (3), pp. 244–256.
  • C. J. Howls, P. J. Langman and A. B. Olde Daalhuis (2004) On the higher-order Stokes phenomenon. Proc. Roy. Soc. London Ser. A 460, pp. 2285–2303.
  • C. J. Howls and A. B. Olde Daalhuis (1999) On the resurgence properties of the uniform asymptotic expansion of Bessel functions of large order. Proc. Roy. Soc. London Ser. A 455, pp. 3917–3930.
  • C. J. Howls (1992) Hyperasymptotics for integrals with finite endpoints. Proc. Roy. Soc. London Ser. A 439, pp. 373–396.
  • M. Hoyles, S. Kuyucak and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • Y. P. Hsu (1993) Development of a Gaussian hypergeometric function code in complex domains. Internat. J. Modern Phys. C 4 (4), pp. 805–840.
  • L. K. Hua (1963) Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Translations of Mathematical Monographs, Vol. 6, American Mathematical Society, Providence, RI.
  • I. Huang and S. Huang (1999) Bernoulli numbers and polynomials via residues. J. Number Theory 76 (2), pp. 178–193.
  • J. H. Hubbard and B. B. Hubbard (2002) Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. 2nd edition, Prentice Hall Inc., Upper Saddle River, NJ.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. in S. Flügge (Ed.), Handbuch der Physik, Bd. 41/1, pp. 408–465.
  • T. E. Hull and A. Abrham (1986) Variable precision exponential function. ACM Trans. Math. Software 12 (2), pp. 79–91.
  • P. Humbert (1920) Sur les fonctions hypercylindriques. C. R. Acad. Sci. Paris Sér. I Math. 171, pp. 490–492 (French).
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.
  • C. Hunter and B. Guerrieri (1981) The eigenvalues of Mathieu’s equation and their branch points. Stud. Appl. Math. 64 (2), pp. 113–141.
  • C. Hunter and B. Guerrieri (1982) The eigenvalues of the angular spheroidal wave equation. Stud. Appl. Math. 66 (3), pp. 217–240.
  • C. Hunter (1981) Two Parametric Eigenvalue Problems of Differential Equations. Spectral Theory of Differential Operators (Birmingham, AL, 1981), North-Holland Math. Stud., Vol. 55, pp. 233–241.
  • G. Hunter and M. Kuriyan (1976) Asymptotic expansions of Mathieu functions in wave mechanics. J. Comput. Phys. 21 (3), pp. 319–325.
  • A. Hurwitz (1882) Einige Eigenschaften der Dirichletschen Functionen F(s)=(Dn)1n, die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten. Zeitschrift für Math. u. Physik 27, pp. 86–101 (German).