Bibliography GBibliography I

Bibliography H

ABCDEFG♦H♦IJKLMNOPQRSTUVWXYZ
  • L. Habsieger (1986)
    La q-conjecture de Macdonald-Morris pour G_{2},
    C. R. Acad. Sci. Paris Sér. I Math. 303 (6), pp. 211–213 (French).
  • L. Habsieger (1988)
    Une q-intégrale de Selberg et Askey,
    SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • J. Hadamard (1896)
    Sur la distribution des zéros de la fonction \mathop{\zeta\/}\nolimits(s) et ses conséquences arithmétiques,
    Bull. Soc. Math. France 24, pp. 199–220 (French).
  • P. I. Hadži (1968)
    Computation of certain integrals that contain a probability function.,
    Bul. Akad. Štiince RSS Moldoven 1968 (2), pp. 81–104. (errata insert) (Russian).
  • P. I. Hadži (1969)
    Certain integrals that contain a probability function and degenerate hypergeometric functions,
    Bul. Akad. S̆tiince RSS Moldoven 1969 (2), pp. 40–47 (Russian).
  • P. I. Hadži (1970)
    Some integrals that contain a probability function and hypergeometric functions,
    Bul. Akad. Štiince RSS Moldoven 1970 (1), pp. 49–62 (Russian).
  • P. I. Hadži (1972)
    Certain sums that contain cylindrical functions,
    Bul. Akad. Štiince RSS Moldoven. 1972 (3), pp. 75–77, 94 (Russian).
  • P. I. Hadži (1973)
    The Laplace transform for expressions that contain a probability function,
    Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1975a)
    Certain integrals that contain a probability function,
    Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • P. I. Hadži (1975b)
    Integrals containing the Fresnel functions S(x) and C(x),
    Bul. Akad. Štiince RSS Moldoven. 1975 (3), pp. 48–60, 93 (Russian).
  • P. I. Hadži (1976a)
    Expansions for the probability function in series of Čebyšev polynomials and Bessel functions,
    Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b)
    Integrals that contain a probability function of complicated arguments,
    Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978)
    Sums with cylindrical functions that reduce to the probability function and to related functions,
    Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • E. Hahn (1980)
    Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen,
    Math. Z. 171 (3), pp. 201–226 (German).
  • W. Hahn (1949)
    Über Orthogonalpolynome, die q-Differenzengleichungen genügen,
    Math. Nachr. 2, pp. 4–34 (German).
  • E. Hairer, S. P. Nørsett and G. Wanner (1993)
    Solving Ordinary Differential Equations. I. Nonstiff Problems,
    2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • E. Hairer, S. P. Nørsett and G. Wanner (2000)
    Solving Ordinary Differential Equations. I. Nonstiff Problems,
    2nd edition, Springer-Verlag, Berlin.
  • E. Hairer and G. Wanner (1996)
    Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems,
    2nd edition, Springer Series in Computational Mathematics, Vol. 14, Springer-Verlag, Berlin.
  • R. L. Hall, N. Saad and K. D. Sen (2010)
    Soft-core Coulomb potentials and Heun’s differential equation,
    J. Math. Phys. 51 (Art. ID 022107, 19 pages).
  • M. H. Halley, D. Delande and K. T. Taylor (1993)
    The combination of R-matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr,
    J. Phys. B 26 (12), pp. 1775–1790.
  • A. J. S. Hamilton (2001)
    Formulae for growth factors in expanding universes containing matter and a cosmological constant,
    Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • J. Hammack, D. McCallister, N. Scheffner and H. Segur (1995)
    Two-dimensional periodic waves in shallow water. II. Asymmetric waves,
    J. Fluid Mech. 285, pp. 95–122.
  • J. Hammack, N. Scheffner and H. Segur (1989)
    Two-dimensional periodic waves in shallow water,
    J. Fluid Mech. 209, pp. 567–589.
  • H. Hancock (1958)
    Elliptic Integrals,
    Dover Publications Inc., New York.
  • R. A. Handelsman and J. S. Lew (1970)
    Asymptotic expansion of Laplace transforms near the origin,
    SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • R. A. Handelsman and J. S. Lew (1971)
    Asymptotic expansion of a class of integral transforms with algebraically dominated kernels,
    J. Math. Anal. Appl. 35 (2), pp. 405–433.
  • S. Hanish, R. V. Baier, A. L. Van Buren and B. J. King (1970)
    Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m=0,1,2; Vols. 4-6, Oblate, m=0,1,2,
    Technical report
    Naval Research Laboratory, Washington, D.C..
  • E. R. Hansen (1975)
    A Table of Series and Products,
    Prentice-Hall, Englewood Cliffs, NJ.
  • E. W. Hansen (1985)
    Fast Hankel transform algorithm,
    IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • J. Happel and H. Brenner (1973)
    Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media,
    2nd edition, Noordhoff International Publishing, Leyden.
  • G. H. Hardy, J. E. Littlewood and G. Pólya (1967)
    Inequalities,
    2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
  • G. H. Hardy and J. E. Littlewood (1925)
    Some problems of “Partitio Numerorum” (VI): Further researches in Waring’s Problem,
    Math. Z. 23, pp. 1–37.
  • G. H. Hardy and S. Ramanujan (1918)
    Asymptotic formulae in combinatory analysis,
    Proc. London Math. Soc. (2) 17, pp. 75–115.
  • G. H. Hardy and E. M. Wright (1979)
    An Introduction to the Theory of Numbers,
    5th edition, The Clarendon Press Oxford University Press, New York-Oxford.
  • G. H. Hardy (1912)
    Note on Dr. Vacca’s series for \gamma,
    Quart. J. Math. 43, pp. 215–216.
  • G. H. Hardy (1940)
    Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work,
    Cambridge University Press, Cambridge, England.
  • G. H. Hardy (1949)
    Divergent Series,
    Clarendon Press, Oxford.
  • G. H. Hardy (1952)
    A Course of Pure Mathematics,
    10th edition, Cambridge University Press.
  • B. A. Hargrave and B. D. Sleeman (1977)
    Lamé polynomials of large order,
    SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • B. A. Hargrave (1978)
    High frequency solutions of the delta wing equations,
    Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • F. E. Harris (2000)
    Spherical Bessel expansions of sine, cosine, and exponential integrals,
    Appl. Numer. Math. 34 (1), pp. 95–98.
  • F. E. Harris (2002)
    Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion,
    Internat. J. Quantum Chem. 88 (6), pp. 701–734.
  • J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. G. Thacher, Jr. and C. Witzgall (1968)
    Computer Approximations,
    SIAM Ser. in Appl. Math., John Wiley & Sons Inc., New York.
  • D. R. Hartree (1936)
    Some properties and applications of the repeated integrals of the error function,
    Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • Harvard University (1945)
    Tables of the Modified Hankel Functions of Order One-Third and of their Derivatives,
    Harvard University Press, Cambridge, MA.
  • A. Hasegawa (1989)
    Optical Solitons in Fibers,
    Springer-Verlag, Berlin, Germany.
  • C. B. Haselgrove and J. C. P. Miller (1960)
    Tables of the Riemann Zeta Function,
    Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • C. Hastings (1955)
    Approximations for Digital Computers,
    Princeton University Press, Princeton, N. J..
  • S. P. Hastings and J. B. McLeod (1980)
    A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation,
    Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • H. J. Haubold, A. M. Mathai and R. K. Saxena (2011)
    Mittag-Leffler functions and their applications,
    J. Appl. Math. (Art. ID 298628, 51 pages).
  • M. Hauss (1997)
    An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to \zeta(2m+1),
    Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998)
    A Boole-type Formula involving Conjugate Euler Polynomials,
    in Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995),
    (H. Th. Jongen and W. Oberschelp Eds.), pp. 361–375.
  • B. Hayes (2009)
    The higher arithmetic,
    American Scientist 97, pp. 364–368.
  • V. B. Headley and V. K. Barwell (1975)
    On the distribution of the zeros of generalized Airy functions,
    Math. Comp. 29 (131), pp. 863–877.
  • G. J. Heckman (1991)
    An elementary approach to the hypergeometric shift operators of Opdam,
    Invent. Math. 103 (2), pp. 341–350.
  • M. Heil (1995)
    Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems,
    Ph.D. Thesis, Technischen Universität Berlin.
  • R. S. Heller (1976)
    25D Table of the First One Hundred Values of j_{{0,s}},J_{1}(j_{{0,s}}), j_{{1,s}},J_{0}(j_{{1,s}})=J_{0}(j^{{\prime}}_{{0,s+1}}),j^{{\prime}}_{{1,s}},J_{1}(j^{{\prime}}_{{1,s}}),
    Technical report
    Department of Physics, Worcester Polytechnic Institute, Worcester, MA.