-
E. Hendriksen and H. van Rossum (1986)
Orthogonal Laurent polynomials,
Nederl. Akad. Wetensch. Indag. Math. 48 (1), pp. 17–36.
-
P. Henrici (1974)
Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros,
Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
-
P. Henrici (1977)
Applied and Computational Complex Analysis. Vol. 2: Special Functions—Integral Transforms—Asymptotics—Continued Fractions,
Wiley-Interscience [John Wiley & Sons], New York.
-
P. Henrici (1986)
Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions,
Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
-
J. R. Herndon (1961a)
Algorithm 55: Complete elliptic integral of the first kind,
Comm. ACM 4 (4), pp. 180.
-
J. R. Herndon (1961b)
Algorithm 56: Complete elliptic integral of the second kind,
Comm. ACM 4 (4), pp. 180–181.
-
D. R. Herrick and S. O’Connor (1998)
Inverse virial symmetry of diatomic potential curves,
J. Chem. Phys. 109 (1), pp. 11–19.
-
C. S. Herz (1955)
Bessel functions of matrix argument,
Ann. of Math. (2) 61 (3), pp. 474–523.
-
H. W. Hethcote (1970)
Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems,
J. Mathematical Phys. 11 (8), pp. 2501–2504.
-
D. Hilbert (1909)
Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl
Potenzen (Waringsches Problem),
Nachrichten von der Gesellschaft der Wissenschaften
zu Göttingen, Mathematisch-Physikalische Klasse, pp. 17–36 (German).
-
F. B. Hildebrand (1974)
Introduction to Numerical Analysis,
2nd edition, McGraw-Hill Book Co., New York.
-
C. J. Hill (1828)
Über die Integration logarithmisch-rationaler Differentiale,
J. Reine Angew. Math. 3, pp. 101–159.
-
G. W. Hill and A. W. Davis (1973)
Algorithm 442: Normal deviate,
Comm. ACM 16 (1), pp. 51–52.
-
G. W. Hill (1970)
Algorithm 395: Student’s t-distribution,
Comm. ACM 13 (10), pp. 617–619.
-
G. W. Hill (1981)
Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions:
,
and their inverses [S14],
ACM Trans. Math. Software 7 (2), pp. 233–238.
-
I. D. Hill (1973)
Algorithm AS66: The normal integral,
Appl. Statist. 22 (3), pp. 424–427.
-
E. Hille (1929)
Note on some hypergeometric series of higher order,
J. London Math. Soc. 4, pp. 50–54.
-
E. Hille (1976)
Ordinary Differential Equations in the Complex Domain,
Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
-
P. Hillion (1997)
Diffraction and Weber functions,
SIAM J. Appl. Math. 57 (6), pp. 1702–1715.
-
M. H. Hirata (1975)
Flow near the bow of a steadily turning ship,
J. Fluid Mech. 71 (2), pp. 283–291.
-
N. J. Hitchin (1995)
Poncelet Polygons and the Painlevé Equations,
in Geometry and Analysis (Bombay, 1992),
pp. 151–185.
-
N. J. Hitchin (2003)
A lecture on the octahedron,
Bull. London Math. Soc. 35 (5), pp. 577–600.
-
M. Hiyama and H. Nakamura (1997)
Two-center Coulomb functions,
Comput. Phys. Comm. 103 (2-3), pp. 209–216.
-
E. W. Hobson (1928)
A Treatise on Plane and Advanced Trigonometry,
7th edition, Cambridge University Press.
-
E. W. Hobson (1931)
The Theory of Spherical and Ellipsoidal Harmonics,
Cambridge University Press, London-New York.
-
H. Hochstadt (1963)
Estimates of the stability intervals for Hill’s equation,
Proc. Amer. Math. Soc. 14 (6), pp. 930–932.
-
H. Hochstadt (1964)
Differential Equations: A Modern Approach,
Holt, Rinehart and Winston, New York.
-
H. Hochstadt (1971)
The Functions of Mathematical Physics,
Wiley-Interscience [John Wiley & Sons, Inc.], New York-London-Sydney.
-
L. E. Hoisington and G. Breit (1938)
Calculation of Coulomb wave functions for high energies,
Phys. Rev. 54 (8), pp. 627–628.
-
P. Holmes and D. Spence (1984)
On a Painlevé-type boundary-value problem,
Quart. J. Mech. Appl. Math. 37 (4), pp. 525–538.
-
E. Hopf (1934)
Mathematical Problems of Radiative Equilibrium,
Cambridge Tracts in Mathematics and Mathematical Physics No. 31, Cambridge University Press, Cambridge.
-
K. Horata (1989)
An explicit formula for Bernoulli numbers,
Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
-
K. Horata (1991)
On congruences involving Bernoulli numbers and irregular primes. II,
Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
-
F. T. Howard (1976)
Roots of the Euler polynomials,
Pacific J. Math. 64 (1), pp. 181–191.
-
F. T. Howard (1996a)
Explicit formulas for degenerate Bernoulli numbers,
Discrete Math. 162 (1-3), pp. 175–185.
-
F. T. Howard (1996b)
Sums of powers of integers via generating functions,
Fibonacci Quart. 34 (3), pp. 244–256.
-
C. J. Howls, P. J. Langman and A. B. Olde Daalhuis (2004)
On the higher-order Stokes phenomenon,
Proc. Roy. Soc. London Ser. A 460, pp. 2285–2303.
-
C. J. Howls and A. B. Olde Daalhuis (1999)
On the resurgence properties of the uniform asymptotic expansion of Bessel functions of large order,
Proc. Roy. Soc. London Ser. A 455, pp. 3917–3930.
-
C. J. Howls (1992)
Hyperasymptotics for integrals with finite endpoints,
Proc. Roy. Soc. London Ser. A 439, pp. 373–396.
-
M. Hoyles, S. Kuyucak and S. Chung (1998)
Solutions of Poisson’s equation in channel-like geometries,
Comput. Phys. Comm. 115 (1), pp. 45–68.
-
Y. P. Hsu (1993)
Development of a Gaussian hypergeometric function code in complex domains,
Internat. J. Modern Phys. C 4 (4), pp. 805–840.
-
L. K. Hua (1963)
Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains,
Translations of Mathematical Monographs, Vol. 6, American Mathematical Society, Providence, RI.
-
I. Huang and S. Huang (1999)
Bernoulli numbers and polynomials via residues,
J. Number Theory 76 (2), pp. 178–193.
-
J. H. Hubbard and B. B. Hubbard (2002)
Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach,
2nd edition, Prentice Hall Inc., Upper Saddle River, NJ.
-
M. H. Hull and G. Breit (1959)
Coulomb Wave Functions,
in Handbuch der Physik, Bd. 41/1,
pp. 408–465.
-
T. E. Hull and A. Abrham (1986)
Variable precision exponential function,
ACM Trans. Math. Software 12 (2), pp. 79–91.
-
P. Humbert (1920)
Sur les fonctions hypercylindriques,
C. R. Acad. Sci. Paris Sér. I Math. 171, pp. 490–492 (French).
-
J. Humblet (1984)
Analytical structure and properties of Coulomb wave functions for real and complex energies,
Ann. Physics 155 (2), pp. 461–493.
-
J. Humblet (1985)
Bessel function expansions of Coulomb wave functions,
J. Math. Phys. 26 (4), pp. 656–659.
-
C. Hunter and B. Guerrieri (1981)
The eigenvalues of Mathieu’s equation and their branch points,
Stud. Appl. Math. 64 (2), pp. 113–141.
-
C. Hunter and B. Guerrieri (1982)
The eigenvalues of the angular spheroidal wave equation,
Stud. Appl. Math. 66 (3), pp. 217–240.
-
C. Hunter (1981)
Two Parametric Eigenvalue Problems of Differential Equations,
in Spectral Theory of Differential Operators (Birmingham, AL,
1981),
North-Holland Math. Stud., Vol. 55, pp. 233–241.
-
G. Hunter and M. Kuriyan (1976)
Asymptotic expansions of Mathieu functions in wave mechanics,
J. Comput. Phys. 21 (3), pp. 319–325.
-
A. Hurwitz (1882)
Einige Eigenschaften der Dirichletschen Functionen
, die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten,
Zeitschrift für Math. u. Physik 27, pp. 86–101 (German).