What's New
About the Project
NIST
11 Struve and Related FunctionsComputation

§11.14 Tables

Contents

§11.14(i) Introduction

For tables before 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960). Tables listed in these Indices are omitted from the subsections that follow.

§11.14(ii) Struve Functions

  • Abramowitz and Stegun (1964, Chapter 12) tabulates Hn(x), Hn(x)-Yn(x), and In(x)-Ln(x) for n=0,1 and x=0(.1)5, x-1=0(.01)0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates Hn(x) and e-xLn(x) for n=0,1 and x=0(.001)5(.005)15(.01)100 to 11D.

  • Barrett (1964) tabulates Ln(x) for n=0,1 and x=0.2(.005)4(.05)10(.1)19.2 to 5 or 6S, x=6(.25)59.5(.5)100 to 2S.

  • Zanovello (1975) tabulates Hn(x) for n=-4(1)15 and x=0.5(.5)26 to 8D or 9S.

  • Zhang and Jin (1996) tabulates Hn(x) and Ln(x) for n=-4(1)3 and x=0(1)20 to 8D or 7S.

§11.14(iii) Integrals

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0x(I0(t)-L0(t))dt and (2/π)xt-1H0(t)dt for x=0(.1)5 to 5D or 7D; 0x(H0(t)-Y0(t))dt-(2/π)lnx, 0x(I0(t)-L0(t))dt-(2/π)lnx, and xt-1(H0(t)-Y0(t))dt for x-1=0(.01)0.2 to 6D.

  • Agrest et al. (1982) tabulates 0xH0(t)dt and e-x0xL0(t)dt for x=0(.001)5(.005)15(.01)100 to 11D.

§11.14(iv) Anger–Weber Functions

  • Bernard and Ishimaru (1962) tabulates Jν(x) and Eν(x) for ν=-10(.1)10 and x=0(.1)10 to 5D.

  • Jahnke and Emde (1945) tabulates En(x) for n=1,2 and x=0(.01)14.99 to 4D.

§11.14(v) Incomplete Functions

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function Hn(x,α) for n=0,1, x=0(.2)10, and α=0(.2)1.4,12π, together with surface plots.