-
X. Li and R. Wong (1994)
Error bounds for asymptotic expansions of Laplace convolutions,
SIAM J. Math. Anal. 25 (6), pp. 1537–1553.
-
X. Li and R. Wong (2000)
A uniform asymptotic expansion for Krawtchouk polynomials,
J. Approx. Theory 106 (1), pp. 155–184.
-
X. Li and R. Wong (2001)
On the asymptotics of the Meixner-Pollaczek polynomials and their zeros,
Constr. Approx. 17 (1), pp. 59–90.
-
X. Li, X. Shi and J. Zhang (1991)
Generalized Riemann
-function regularization and Casimir energy for a piecewise uniform string,
Phys. Rev. D 44 (2), pp. 560–562.
-
Y. T. Li and R. Wong (2008)
Integral and series representations of the Dirac delta function,
Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
-
Y. A. Li and P. J. Olver (2000)
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,
J. Differential Equations 162 (1), pp. 27–63.
-
E. M. Lifshitz and L. P. Pitaevskiĭ (1980)
Statistical Physics, Part 2: Theory of the Condensed State,
Pergamon Press, Oxford.
-
M. J. Lighthill (1958)
An Introduction to Fourier Analysis and Generalised Functions,
Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York.
-
E. Lindelöf (1905)
Le Calcul des Résidus et ses Applications à la Théorie des Fonctions,
Gauthier-Villars, Paris (French).
-
P. Linz and T. E. Kropp (1973)
A note on the computation of integrals involving products of trigonometric and Bessel functions,
Math. Comp. 27 (124), pp. 871–872.
-
J. E. Littlewood (1914)
Sur la distribution des nombres premiers,
Comptes Rendus de l’Academie des Sciences, Paris 158, pp. 1869–1872 (French).
-
M. Yu. Loenko (2001)
Evaluating elementary functions with guaranteed precision,
Programming and Computer Software 27 (2), pp. 101–110.
-
I. M. Longman (1956)
Note on a method for computing infinite integrals of oscillatory functions,
Proc. Cambridge Philos. Soc. 52 (4), pp. 764–768.
-
L. Lorch (1992)
On Bessel functions of equal order and argument,
Rend. Sem. Mat. Univ. Politec. Torino 50 (2), pp. 209–216 (1993).
-
L. Lorch, M. E. Muldoon and P. Szego (1970)
Higher monotonicity properties of certain Sturm-Liouville functions. III,
Canad. J. Math. 22, pp. 1238–1265.
-
L. Lorch, M. E. Muldoon and P. Szego (1972)
Higher monotonicity properties of certain Sturm-Liouville functions. IV,
Canad. J. Math. 24, pp. 349–368.
-
L. Lorch and M. E. Muldoon (2008)
Monotonic sequences related to zeros of Bessel functions,
Numer. Algorithms 49 (1-4), pp. 221–233.
-
L. Lorch and P. Szego (1963)
Higher monotonicity properties of certain Sturm-Liouville functions.,
Acta Math. 109, pp. 55–73.
-
L. Lorch and P. Szego (1964)
Monotonicity of the differences of zeros of Bessel functions as a function of order,
Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
-
L. Lorch and P. Szego (1990)
On the points of inflection of Bessel functions of positive order. I,
Canad. J. Math. 42 (5), pp. 933–948.
-
L. Lorch and P. Szego (1995)
Monotonicity of the zeros of the third derivative of Bessel functions,
Methods Appl. Anal. 2 (1), pp. 103–111.
-
L. Lorch (1984)
Inequalities for ultraspherical polynomials and the gamma function,
J. Approx. Theory 40 (2), pp. 115–120.
-
L. Lorch (1990)
Monotonicity in terms of order of the zeros of the derivatives of Bessel functions,
Proc. Amer. Math. Soc. 108 (2), pp. 387–389.
-
L. Lorch (1993)
Some inequalities for the first positive zeros of Bessel functions,
SIAM J. Math. Anal. 24 (3), pp. 814–823.
-
L. Lorch (1995)
The zeros of the third derivative of Bessel functions of order less than one,
Methods Appl. Anal. 2 (2), pp. 147–159.
-
L. Lorch (2002)
Comparison of a pair of upper bounds for a ratio of gamma functions,
Math. Balkanica (N.S.) 16 (1-4), pp. 195–202.
-
Lord Kelvin (1891)
Popular Lectures and Addresses,
Vol. 3, pp. 481–488.
-
Lord Kelvin (1905)
Deep water ship-waves,
Phil. Mag. 9, pp. 733–757.
-
Lord Rayleigh (1945)
The Theory of Sound,
2nd edition, Dover Publications, New York.
-
H. A. Lorentz, A. Einstein, H. Minkowski and H. Weyl (1923)
The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity,
Methuen and Co., Ltd., London.
-
L. Lorentzen and H. Waadeland (1992)
Continued Fractions with Applications,
Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
-
H. Lotsch and M. Gray (1964)
Algorithm 244: Fresnel integrals,
Comm. ACM 7 (11), pp. 660–661.
-
J. D. Louck (1958)
New recursion relation for the Clebsch-Gordan coefficients,
Phys. Rev. (2) 110 (4), pp. 815–816.
-
E. R. Love (1970)
Changing the order of integration,
J. Austral. Math. Soc. 11, pp. 421–432.
-
E. R. Love (1972a)
Addendum to: “Changing the order of integration”,
J. Austral. Math. Soc. 14, pp. 383–384.
-
E. R. Love (1972b)
Two index laws for fractional integrals and derivatives,
J. Austral. Math. Soc. 14, pp. 385–410.
-
L. Lovász, L. Pyber, D. J. A. Welsh and G. M. Ziegler (1995)
Combinatorics in Pure Mathematics,
in Handbook of Combinatorics, Vol. 2,
(M. Grötschel and L. Lovász Eds.), pp. 2039–2082.
-
A. N. Lowan and W. Horenstein (1942)
On the function 
,
J. Math. Phys. Mass. Inst. Tech. 21, pp. 264–283.
-
T. A. Lowdon (1970)
Integral representation of the Hankel function in terms of parabolic cylinder functions,
Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
-
D. W. Lozier and F. W. J. Olver (1993)
Airy and Bessel Functions by Parallel Integration of ODEs,
(D. E. Keyes, M. R. Leuze, L. R. Petzold and D. A. Reed Eds.), Philadelphia, PA, pp. 530–538.
-
D. W. Lozier and F. W. J. Olver (1994)
Numerical Evaluation of Special Functions,
in Mathematics of Computation 1943–1993: A Half-Century of
Computational Mathematics (Vancouver, BC, 1993),
Proc. Sympos. Appl. Math., Vol. 48, pp. 79–125.
-
D. W. Lozier and J. M. Smith (1981)
Algorithm 567: Extended-range arithmetic and normalized Legendre polynomials [A1], [C1],
ACM Trans. Math. Software 7 (1), pp. 141–146.
-
D. W. Lozier (1980)
Numerical Solution of Linear Difference Equations,
NBSIR
Technical Report 80-1976, National Bureau of Standards, Gaithersburg, MD 20899.
-
D. W. Lozier (1993)
An underflow-induced graphics failure solved by SLI arithmetic,
(M. J. Irwin and G. A. Jullien Eds.), Washington, D.C., pp. 10–17.
-
S. K. Lucas and H. A. Stone (1995)
Evaluating infinite integrals involving Bessel functions of arbitrary order,
J. Comput. Appl. Math. 64 (3), pp. 217–231.
-
S. K. Lucas (1995)
Evaluating infinite integrals involving products of Bessel functions of arbitrary order,
J. Comput. Appl. Math. 64 (3), pp. 269–282.
-
É. Lucas (1891)
Théorie des nombres. Tome I: Le calcul des nombres entiers, le calcul des nombres rationnels, la divisibilité arithmétique,
Gauthier-Villars, Paris (French).
-
D. Ludwig (1966)
Uniform asymptotic expansions at a caustic,
Comm. Pure Appl. Math. 19, pp. 215–250.
-
N. A. Lukaševič and A. I. Yablonskiĭ (1967)
On a set of solutions of the sixth Painlevé equation,
Differ. Uravn. 3 (3), pp. 520–523 (Russian).
-
N. A. Lukaševič (1965)
Elementary solutions of certain Painlevé equations,
Differ. Uravn. 1 (3), pp. 731–735 (Russian).
-
N. A. Lukaševič (1967a)
Theory of the fourth Painlevé equation,
Differ. Uravn. 3 (5), pp. 771–780 (Russian).
-
N. A. Lukaševič (1967b)
On the theory of Painlevé’s third equation,
Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
-
N. A. Lukaševič (1968)
Solutions of the fifth Painlevé equation,
Differ. Uravn. 4 (8), pp. 1413–1420 (Russian).
-
N. A. Lukaševič (1971)
The second Painlevé equation,
Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).
-
Y. L. Luke and J. Wimp (1963)
Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray,
Math. Comp. 17 (84), pp. 395–404.
-
Y. L. Luke (1959)
Expansion of the confluent hypergeometric function in series of Bessel functions,
Math. Tables Aids Comput. 13 (68), pp. 261–271.
-
Y. L. Luke (1962)
Integrals of Bessel Functions,
McGraw-Hill Book Co., Inc., New York.
-
Y. L. Luke (1968)
Approximations for elliptic integrals,
Math. Comp. 22 (103), pp. 627–634.
-
Y. L. Luke (1969a)
The Special Functions and their Approximations, Vol. 1,
Academic Press, New York.
-
Y. L. Luke (1969b)
The Special Functions and their Approximations. Vol. 2,
Academic Press, New York.
-
Y. L. Luke (1970)
Further approximations for elliptic integrals,
Math. Comp. 24 (109), pp. 191–198.
-
Y. L. Luke (1971a)
Miniaturized tables of Bessel functions. II,
Math. Comp. 25 (116), pp. 789–795 and D14–E13.
-
Y. L. Luke (1971b)
Miniaturized tables of Bessel functions,
Math. Comp. 25 (114), pp. 323–330.
-
Y. L. Luke (1972)
Miniaturized tables of Bessel functions. III,
Math. Comp. 26 (117), pp. 237–240 and A14–B5.
-
Y. L. Luke (1975)
Mathematical Functions and their Approximations,
Academic Press Inc., New York.
-
Y. L. Luke (1977a)
Algorithms for rational approximations for a confluent hypergeometric function,
Utilitas Math. 11, pp. 123–151.
-
Y. L. Luke (1977b)
Algorithms for the Computation of Mathematical Functions,
Academic Press, New York.
-
J. Lund (1985)
Bessel transforms and rational extrapolation,
Numer. Math. 47 (1), pp. 1–14.
-
J. H. Luscombe and M. Luban (1998)
Simplified recursive algorithm for Wigner
and
symbols,
Phys. Rev. E 57 (6), pp. 7274–7277.
-
W. Luther (1995)
Highly accurate tables for elementary functions,
BIT 35 (3), pp. 352–360.
-
R. J. Lyman and W. W. Edmonson (2001)
Linear prediction of bandlimited processes with flat spectral densities,
IEEE Trans. Signal Process. 49 (7), pp. 1564–1569.
-
A. E. Lynas-Gray (1993)
VOIGTL – A fast subroutine for Voigt function evaluation on vector processors,
Comput. Phys. Comm. 75 (1-2), pp. 135–142.
-
J. N. Lyness (1971)
Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature,
Math. Comp. 25 (113), pp. 87–104.
-
J. N. Lyness (1985)
Integrating some infinite oscillating tails,
J. Comput. Appl. Math. 12/13, pp. 109–117.
-
J. L. López (2001)
Uniform asymptotic expansions of symmetric elliptic integrals,
Constr. Approx. 17 (4), pp. 535–559.
-
J. L. López and P. J. Pagola (2010)
J. Comput. Appl. Math. 233 (6), pp. 1570–1576.
-
J. L. López and N. M. Temme (1999a)
Approximation of orthogonal polynomials in terms of Hermite polynomials,
Methods Appl. Anal. 6 (2), pp. 131–146.
-
J. L. López and N. M. Temme (1999b)
Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials,
J. Math. Anal. Appl. 239 (2), pp. 457–477.
-
J. L. López (1999)
Asymptotic expansions of the Whittaker functions for large order parameter,
Methods Appl. Anal. 6 (2), pp. 249–256.
-
J. L. López (2000)
Asymptotic expansions of symmetric standard elliptic integrals,
SIAM J. Math. Anal. 31 (4), pp. 754–775.
-
J. L. López and N. M. Temme (2010)
Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions,
Numer. Math. 116 (2), pp. 269–289.