5.8 Infinite Products5.10 Continued Fractions

§5.9 Integral Representations

Contents

§5.9(i) Gamma Function

5.9.1\frac{1}{\mu}\mathop{\Gamma\/}\nolimits\!\left(\frac{\nu}{\mu}\right)\frac{1}{z^{{\nu/\mu}}}=\int _{0}^{\infty}\mathop{\exp\/}\nolimits\!\left(-zt^{\mu}\right)t^{{\nu-1}}dt,

\realpart{\nu}>0, \mu>0, and \realpart{z}>0. (The fractional powers have their principal values.)

Hankel’s Loop Integral

5.9.2\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(z\right)}=\frac{1}{2\pi i}\int _{{-\infty}}^{{(0+)}}e^{t}t^{{-z}}dt,

where the contour begins at -\infty, circles the origin once in the positive direction, and returns to -\infty. t^{{-z}} has its principal value where t crosses the positive real axis, and is continuous. See Figure 5.9.1.

See accompanying text
Figure 5.9.1: t-plane. Contour for Hankel’s loop integral. Magnify
5.9.3c^{{-z}}\mathop{\Gamma\/}\nolimits\!\left(z\right)=\int _{{-\infty}}^{\infty}|t|^{{2z-1}}e^{{-ct^{2}}}dt,c>0, \realpart{z}>0,

where the path is the real axis.

5.9.4\mathop{\Gamma\/}\nolimits\!\left(z\right)=\int _{1}^{\infty}t^{{z-1}}e^{{-t}}dt+\sum _{{k=0}}^{\infty}\frac{(-1)^{k}}{(z+k)k!},z\neq 0,-1,-2,\dots.
5.9.5\mathop{\Gamma\/}\nolimits\!\left(z\right)=\int _{0}^{\infty}t^{{z-1}}\left(e^{{-t}}-\sum _{{k=0}}^{n}\frac{(-1)^{k}t^{k}}{k!}\right)dt,-n-1<\realpart{z}<-n.
5.9.8\mathop{\Gamma\/}\nolimits\!\left(1+\frac{1}{n}\right)\mathop{\cos\/}\nolimits\!\left(\frac{\pi}{2n}\right)=\int _{0}^{\infty}\mathop{\cos\/}\nolimits\!\left(t^{n}\right)dt,n=2,3,4,\dots,
5.9.9\mathop{\Gamma\/}\nolimits\!\left(1+\frac{1}{n}\right)\mathop{\sin\/}\nolimits\!\left(\frac{\pi}{2n}\right)=\int _{0}^{\infty}\mathop{\sin\/}\nolimits\!\left(t^{n}\right)dt,n=2,3,4,\dots.

Binet’s Formula

For additional representations see Whittaker and Watson (1927, §§12.31–12.32).

§5.9(ii) Psi Function, Euler’s Constant, and Derivatives

For \realpart{z}>0,

5.9.12\mathop{\psi\/}\nolimits\!\left(z\right)=\int _{0}^{\infty}\left(\frac{e^{{-t}}}{t}-\frac{e^{{-zt}}}{1-e^{{-t}}}\right)dt,
5.9.13\mathop{\psi\/}\nolimits\!\left(z\right)=\mathop{\ln\/}\nolimits z+\int _{0}^{\infty}\left(\frac{1}{t}-\frac{1}{1-e^{{-t}}}\right)e^{{-tz}}dt,
5.9.14\mathop{\psi\/}\nolimits\!\left(z\right)=\int _{0}^{\infty}\left(e^{{-t}}-\frac{1}{(1+t)^{z}}\right)\frac{dt}{t},
5.9.15\mathop{\psi\/}\nolimits\!\left(z\right)=\mathop{\ln\/}\nolimits z-\frac{1}{2z}-2\int _{0}^{\infty}\frac{tdt}{(t^{2}+z^{2})(e^{{2\pi t}}-1)}.
5.9.16\mathop{\psi\/}\nolimits\!\left(z\right)+\EulerConstant=\int _{0}^{\infty}\frac{e^{{-t}}-e^{{-zt}}}{1-e^{{-t}}}dt=\int _{0}^{1}\frac{1-t^{{z-1}}}{1-t}dt.
5.9.17\mathop{\psi\/}\nolimits\!\left(z+1\right)=-\EulerConstant+\frac{1}{2\pi i}\int _{{-c-\infty i}}^{{-c+\infty i}}\frac{\pi z^{{-s-1}}}{\mathop{\sin\/}\nolimits\!\left(\pi s\right)}\mathop{\zeta\/}\nolimits\!\left(-s\right)ds,

where |\mathop{\mathrm{ph}\/}\nolimits z|\leq\pi-\delta(<\pi) and 1<c<2.

5.9.18\EulerConstant=-\int _{0}^{\infty}e^{{-t}}\mathop{\ln\/}\nolimits tdt=\int _{0}^{\infty}\left(\frac{1}{1+t}-e^{{-t}}\right)\frac{dt}{t}=\int _{0}^{1}(1-e^{{-t}})\frac{dt}{t}-\int _{1}^{\infty}e^{{-t}}\frac{dt}{t}=\int _{0}^{\infty}\left(\frac{e^{{-t}}}{1-e^{{-t}}}-\frac{e^{{-t}}}{t}\right)dt.
5.9.19{\mathop{\Gamma\/}\nolimits^{{(n)}}}\!\left(z\right)=\int _{0}^{\infty}(\mathop{\ln\/}\nolimits t)^{n}e^{{-t}}t^{{z-1}}dt,n\geq 0, \realpart{z}>0.