17.3 q-Elementary and q-Special Functions17.5 \mathop{{{}_{{0}}\phi _{{0}}}\/}\nolimits,\mathop{{{}_{{1}}\phi _{{0}}}\/}\nolimits,\mathop{{{}_{{1}}\phi _{{1}}}\/}\nolimits Functions

§17.4 Basic Hypergeometric Functions

Contents

§17.4(i) \mathop{{{}_{{r}}\phi _{{s}}}\/}\nolimits Functions

17.4.1\mathop{{{}_{{r+1}}\phi _{{s}}}\/}\nolimits\!\left({a_{0},a_{1},a_{2},\dots,a_{r}\atop b_{1},b_{2},\dots,b_{s}};q,z\right)=\mathop{{{}_{{r+1}}\phi _{{s}}}\/}\nolimits\!\left(a_{0},a_{1},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)=\sum _{{n=0}}^{\infty}\frac{\left(a_{0};q\right)_{{n}}\left(a_{1};q\right)_{{n}}\cdots\left(a_{r};q\right)_{{n}}}{\left(q;q\right)_{{n}}\left(b_{1};q\right)_{{n}}\cdots\left(b_{s};q\right)_{{n}}}\*\left((-1)^{n}q^{{\binom{n}{2}}}\right)^{{s-r}}z^{n}.

Here and elsewhere it is assumed that the b_{j} do not take any of the values q^{{-n}}. The infinite series converges for all z when s>r, and for |z|<1 when s=r.

17.4.2\lim _{{q\to 1-}}\mathop{{{}_{{r+1}}\phi _{{r}}}\/}\nolimits\!\left({q^{{a_{0}}},q^{{a_{1}}},\dots,q^{{a_{r}}}\atop q^{{b_{1}}},\dots,q^{{b_{r}}}};q,z\right)=\mathop{{{}_{{r+1}}F_{{r}}}\/}\nolimits\!\left({a_{0},a_{1},\dots,a_{r}\atop b_{1},\dots,b_{r}};z\right).

For the function on the right-hand side see §16.2(i).

This notation is from Gasper and Rahman (2004). It is slightly at variance with the notation in Bailey (1935) and Slater (1966). In these references the factor \left((-1)^{n}q^{{\binom{n}{2}}}\right)^{{s-r}} is not included in the sum. In practice this discrepancy does not usually cause serious problems because the case most often considered is r=s.

§17.4(ii) \mathop{{{}_{{r}}\psi _{{s}}}\/}\nolimits Functions

17.4.3\mathop{{{}_{{r}}\psi _{{s}}}\/}\nolimits\!\left({a_{1},a_{2},\dots,a_{r}\atop b_{1},b_{2},\dots,b_{s}};q,z\right)=\mathop{{{}_{{r}}\psi _{{s}}}\/}\nolimits\!\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)=\sum _{{n=-\infty}}^{{\infty}}\frac{\left(a_{1},a_{2},\dots,a_{r};q\right)_{{n}}(-1)^{{(s-r)n}}q^{{(s-r)\binom{n}{2}}}z^{n}}{\left(b_{1},b_{2},\dots,b_{s};q\right)_{{n}}}=\sum _{{n=0}}^{\infty}\frac{\left(a_{1},a_{2},\dots,a_{r};q\right)_{{n}}(-1)^{{(s-r)n}}q^{{(s-r)\binom{n}{2}}}z^{n}}{\left(b_{1},b_{2},\dots,b_{s};q\right)_{{n}}}+\sum _{{n=1}}^{\infty}\frac{\left(q/b_{1},q/b_{2},\dots,q/b_{s};q\right)_{{n}}}{\left(q/a_{1},q/a_{2},\dots,q/a_{r};q\right)_{{n}}}\left(\frac{b_{1}b_{2}\cdots b_{s}}{a_{1}a_{2}\cdots a_{r}z}\right)^{n}.

Here and elsewhere the b_{j} must not take any of the values q^{{-n}}, and the a_{j} must not take any of the values q^{{n+1}}. The infinite series converge when s\geq r provided that |(b_{1}\cdots b_{s})/(a_{1}\cdots a_{r}z)|<1 and also, in the case s=r, |z|<1.

§17.4(iv) Classification

The series (17.4.1) is said to be balanced or Saalschützian when it terminates, r=s, z=q, and

17.4.9qa_{0}a_{1}\cdots a_{s}=b_{1}b_{2}\cdots b_{s}.

The series (17.4.1) is said to be k-balanced when r=s and

17.4.10q^{k}a_{0}a_{1}\cdots a_{s}=b_{1}b_{2}\cdots b_{s}.

The series (17.4.1) is said to be well-poised when r=s and

17.4.11a_{0}q=a_{1}b_{1}=a_{2}b_{2}=\dots=a_{s}b_{s}.

The series (17.4.1) is said to be very-well-poised when r=s, (17.4.11) is satisfied, and

17.4.12b_{1}=-b_{2}=\sqrt{a_{0}}.

The series (17.4.1) is said to be nearly-poised when r=s and

17.4.13a_{0}q=a_{1}b_{1}=a_{2}b_{2}=\dots=a_{{s-1}}b_{{s-1}}.