-
NAG (commercial C and Fortran libraries)
-
A. Nakamura (1996)
Toda equation and its solutions in special functions,
J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
-
M. Nardin, W. F. Perger and A. Bhalla (1992a)
Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes,
ACM Trans. Math. Software 18 (3), pp. 345–349.
-
M. Nardin, W. F. Perger and A. Bhalla (1992b)
Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes,
J. Comput. Appl. Math. 39 (2), pp. 193–200.
-
W. Narkiewicz (2000)
The Development of Prime Number Theory: From Euclid to Hardy and Littlewood,
Springer-Verlag, Berlin.
-
A. Natarajan and N. Mohankumar (1993)
On the numerical evaluation of the generalised Fermi-Dirac integrals,
Comput. Phys. Comm. 76 (1), pp. 48–50.
-
National Bureau of Standards (1944)
Tables of Lagrangian Interpolation Coefficients,
Columbia University Press, New York.
-
National Physical Laboratory (1961)
Modern Computing Methods,
2nd edition, Notes on Applied Science, No. 16, Her Majesty’s Stationery Office, London.
-
D. Naylor (1984)
On simplified asymptotic formulas for a class of Mathieu functions,
SIAM J. Math. Anal. 15 (6), pp. 1205–1213.
-
D. Naylor (1987)
On a simplified asymptotic formula for the Mathieu function of the third kind,
SIAM J. Math. Anal. 18 (6), pp. 1616–1629.
-
D. Naylor (1989)
On an integral transform involving a class of Mathieu functions,
SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
-
D. Naylor (1990)
On an asymptotic expansion of the Kontorovich-Lebedev transform,
Applicable Anal. 39 (4), pp. 249–263.
-
D. Naylor (1996)
On an asymptotic expansion of the Kontorovich-Lebedev transform,
Methods Appl. Anal. 3 (1), pp. 98–108.
-
National Bureau of Standards (1958)
Integrals of Airy Functions,
National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
-
National Bureau of Standards (1967)
Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors,
2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
-
J. Negro, L. M. Nieto and O. Rosas-Ortiz (2000)
Confluent hypergeometric equations and related solvable potentials in quantum mechanics,
J. Math. Phys. 41 (12), pp. 7964–7996.
-
M. Neher (2007)
Complex standard functions and their implementation in the CoStLy library,
ACM Trans. Math. Softw. 33 (No. 1, Art. 2), pp. .
-
W. J. Nellis and B. C. Carlson (1966)
Reduction and evaluation of elliptic integrals,
Math. Comp. 20 (94), pp. 223–231.
-
J. J. Nestor (1984)
Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole,
Ph.D. Thesis, University of Maryland, College Park, MD.
-
NetNUMPAC (free Fortran library)
-
E. Neuman (1969a)
Elliptic integrals of the second and third kinds,
Zastos. Mat. 11, pp. 99–102.
-
E. Neuman (1969b)
On the calculation of elliptic integrals of the second and third kinds.,
Zastos. Mat. 11, pp. 91–94.
-
E. Neuman (2003)
Bounds for symmetric elliptic integrals,
J. Approx. Theory 122 (2), pp. 249–259.
-
E. Neuman (2004)
Inequalities involving Bessel functions of the first kind,
JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
-
P. Nevai (1986)
Géza Freud, orthogonal polynomials and Christoffel functions. A case study,
J. Approx. Theory 48 (1), pp. 3–167.
-
E. H. Neville (1951)
Jacobian Elliptic Functions,
2nd edition, Clarendon Press, Oxford.
-
J. N. Newman (1984)
Approximations for the Bessel and Struve functions,
Math. Comp. 43 (168), pp. 551–556.
-
M. Newman (1967)
Solving equations exactly,
J. Res. Nat. Bur. Standards Sect. B 71B, pp. 171–179.
-
T. D. Newton (1952)
Coulomb Functions for Large Values of the Parameter 
,
Technical report
Atomic Energy of Canada Limited, Chalk
River, Ontario.