§26.8 Set Partitions: Stirling Numbers
Contents
- §26.8(i) Definitions
- §26.8(ii) Generating Functions
- §26.8(iii) Special Values
- §26.8(iv) Recurrence Relations
- §26.8(v) Identities
- §26.8(vi) Relations to Bernoulli Numbers
- §26.8(vii) Asymptotic Approximations
§26.8(i) Definitions
denotes the Stirling number of the first kind:
times the number of permutations of
with
exactly
cycles. See Table 26.8.1.

denotes the Stirling number of the second kind:
the number of partitions of
into exactly
nonempty
subsets. See Table 26.8.2.
where the summation is over all nonnegative integers
such that ![]()
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | ||||||||||
| 1 | 0 | 1 | |||||||||
| 2 | 0 | −1 | 1 | ||||||||
| 3 | 0 | 2 | −3 | 1 | |||||||
| 4 | 0 | −6 | 11 | −6 | 1 | ||||||
| 5 | 0 | 24 | −50 | 35 | −10 | 1 | |||||
| 6 | 0 | −120 | 274 | −225 | 85 | −15 | 1 | ||||
| 7 | 0 | 720 | −1764 | 1624 | −735 | 175 | −21 | 1 | |||
| 8 | 0 | −5040 | 13068 | −13132 | 6769 | −1960 | 322 | −28 | 1 | ||
| 9 | 0 | 40320 | −1 09584 | 1 18124 | −67284 | 22449 | −4536 | 546 | −36 | 1 | |
| 10 | 0 | −3 62880 | 10 26576 | −11 72700 | 7 23680 | −2 69325 | 6327 | −9450 | 870 | −45 | 1 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | ||||||||||
| 1 | 0 | 1 | |||||||||
| 2 | 0 | 1 | 1 | ||||||||
| 3 | 0 | 1 | 3 | 1 | |||||||
| 4 | 0 | 1 | 7 | 6 | 1 | ||||||
| 5 | 0 | 1 | 15 | 25 | 10 | 1 | |||||
| 6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 | ||||
| 7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | |||
| 8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 | ||
| 9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 | |
| 10 | 0 | 1 | 511 | 9330 | 34105 | 42525 | 22827 | 5880 | 750 | 45 | 1 |
§26.8(ii) Generating Functions
where
is the Pochhammer symbol:
.



§26.8(iii) Special Values
For
,
§26.8(iv) Recurrence Relations


§26.8(v) Identities

when
is analytic for all
, and the series converges.
Let
and
be the
matrices with
th elements
, and
, respectively. Then
§26.8(vi) Relations to Bernoulli Numbers
See §24.15(iii).
§26.8(vii) Asymptotic Approximations
uniformly for
, where
is Euler’s
constant (§5.2(ii)).
fixed.
fixed.
uniformly for
.
For asymptotic approximations for
and
that apply uniformly for
as
see Temme (1993).
For other asymptotic approximations and also expansions see Moser and Wyman (1958a) for Stirling numbers of the first kind, and Moser and Wyman (1958b), Bleick and Wang (1974) for Stirling numbers of the second kind.
For asymptotic estimates for generalized Stirling numbers see Chelluri et al. (2000).



