16.7 Relations to Other Functions16.9 Zeros

§16.8 Differential Equations

Contents

§16.8(i) Classification of Singularities

An ordinary point of the differential equation

16.8.1\frac{{d}^{n}w}{{dz}^{n}}+f_{{n-1}}(z)\frac{{d}^{n-1}w}{{dz}^{n-1}}+f_{{n-2}}(z)\frac{{d}^{n-2}w}{{dz}^{n-2}}+\dots+f_{1}(z)\frac{dw}{dz}+f_{0}(z)w=0

is a value z_{0} of z at which all the coefficients f_{j}(z), j=0,1,\dots,n-1, are analytic. If z_{0} is not an ordinary point but (z-z_{0})^{{n-j}}f_{j}(z), j=0,1,\dots,n-1, are analytic at z=z_{0}, then z_{0} is a regular singularity. All other singularities are irregular. Compare §2.7(i) in the case n=2. Similar definitions apply in the case z_{0}=\infty: we transform \infty into the origin by replacing z in (16.8.1) by 1/z; again compare §2.7(i).

For further information see Hille (1976, pp. 360–370).

§16.8(ii) The Generalized Hypergeometric Differential Equation

With the notation

16.8.2
D=\frac{d}{dz},
\vartheta=z\frac{d}{dz},

the function w=\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(\mathbf{a};\mathbf{b};z\right) satisfies the differential equation

16.8.3\left(\vartheta(\vartheta+b_{1}-1)\cdots(\vartheta+b_{q}-1)-z(\vartheta+a_{1})\cdots(\vartheta+a_{p})\right)w=0.

Equivalently,

16.8.4z^{q}D^{{q+1}}w+\sum _{{j=1}}^{q}z^{{j-1}}(\alpha _{j}z+\beta _{j})D^{j}w+\alpha _{0}w=0,p\leq q,

or

16.8.5z^{q}(1-z)D^{{q+1}}w+\sum _{{j=1}}^{q}z^{{j-1}}(\alpha _{j}z+\beta _{j})D^{j}w+\alpha _{0}w=0,p=q+1,

where \alpha _{j} and \beta _{j} are constants. Equation (16.8.4) has a regular singularity at z=0, and an irregular singularity at z=\infty, whereas (16.8.5) has regular singularities at z=0, 1, and \infty. In each case there are no other singularities. Equation (16.8.3) is of order \max(p,q+1). In Letessier et al. (1994) examples are discussed in which the generalized hypergeometric function satisfies a differential equation that is of order 1 or even 2 less than might be expected.

When no b_{j} is an integer, and no two b_{j} differ by an integer, a fundamental set of solutions of (16.8.3) is given by

16.8.6
w_{0}(z)=\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right),
{w_{j}(z)=z^{{1-b_{j}}}\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({1+a_{1}-b_{j},\dots,1+a_{p}-b_{j}\atop 2-b_{j},1+b_{1}-b_{j},\ldots*\dots,1+b_{q}-b_{j}};z\right),}j=1,\dots,q,

where * indicates that the entry 1+b_{j}-b_{j} is omitted. For other values of the b_{j}, series solutions in powers of z (possibly involving also \mathop{\ln\/}\nolimits z) can be constructed via a limiting process; compare §2.7(i) in the case of second-order differential equations. For details see Smith (1939a, b), and Nørlund (1955).

When p=q+1, and no two a_{j} differ by an integer, another fundamental set of solutions of (16.8.3) is given by

16.8.7\widetilde{w}_{j}(z)=(-z)^{{-a_{j}}}\mathop{{{}_{{q+1}}F_{{q}}}\/}\nolimits\!\left({a_{j},1-b_{1}+a_{j},\dots,1-b_{q}+a_{j}\atop 1-a_{1}+a_{j},\ldots*\dots,1-a_{{q+1}}+a_{j}};\frac{1}{z}\right),j=1,\dots,q+1,

where * indicates that the entry 1-a_{j}+a_{j} is omitted. We have the connection formula

16.8.8\mathop{{{}_{{q+1}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{{q+1}}\atop b_{1},\dots,b_{q}};z\right)=\sum _{{j=1}}^{{q+1}}\left({\textstyle\ifrac{\prod\limits _{{\substack{k=1\\
k\neq j}}}^{{q+1}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a_{k}-a_{j}\right)}{\mathop{\Gamma\/}\nolimits\!\left(a_{k}\right)}}{\prod\limits _{{k=1}}^{q}\frac{\mathop{\Gamma\/}\nolimits\!\left(b_{k}-a_{j}\right)}{\mathop{\Gamma\/}\nolimits\!\left(b_{k}\right)}}}\right)\widetilde{w}_{j}(z),|\mathop{\mathrm{ph}\/}\nolimits\!\left(-z\right)|\leq\pi.

More generally if z_{0} (\in\Complex) is an arbitrary constant, |z-z_{0}|>\max{(|z_{0}|,|z_{0}-1|)}, and |\mathop{\mathrm{ph}\/}\nolimits\!\left(z_{0}-z\right)|<\pi, then

16.8.9\left({\textstyle\ifrac{\prod\limits _{{k=1}}^{{q+1}}\mathop{\Gamma\/}\nolimits\!\left(a_{k}\right)}{\prod\limits _{{k=1}}^{q}\mathop{\Gamma\/}\nolimits\!\left(b_{k}\right)}}\right)\mathop{{{}_{{q+1}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{{q+1}}\atop b_{1},\dots,b_{q}};z\right)=\sum _{{j=1}}^{{q+1}}\left(z_{0}-z\right)^{{-a_{j}}}\sum _{{n=0}}^{\infty}\frac{\mathop{\Gamma\/}\nolimits\!\left(a_{j}+n\right)}{n!}\*\left({\textstyle\ifrac{\prod\limits _{{\substack{k=1\\
k\neq j}}}^{{q+1}}\mathop{\Gamma\/}\nolimits\!\left(a_{k}-a_{j}-n\right)}{\prod\limits _{{k=1}}^{q}\mathop{\Gamma\/}\nolimits\!\left(b_{k}-a_{j}-n\right)}}\right)\*\mathop{{{}_{{q+1}}F_{{q}}}\/}\nolimits\!\left({a_{1}-a_{j}-n,\dots,a_{{q+1}}-a_{j}-n\atop b_{1}-a_{j}-n,\dots,b_{q}-a_{j}-n};z_{0}\right)\left(z-z_{0}\right)^{{-n}}.

(Note that the generalized hypergeometric functions on the right-hand side are polynomials in z_{0}.)

When p=q+1 and some of the a_{j} differ by an integer a limiting process can again be applied. For details see Nørlund (1955). In this reference it is also explained that in general when q>1 no simple representations in terms of generalized hypergeometric functions are available for the fundamental solutions near z=1. Analytical continuation formulas for \mathop{{{}_{{q+1}}F_{{q}}}\/}\nolimits\!\left(\mathbf{a};\mathbf{b};z\right) near z=1 are given in Bühring (1987b) for the case q=2, and in Bühring (1992) for the general case.

§16.8(iii) Confluence of Singularities

If p\leq q, then

16.8.10\lim _{{|\alpha|\to\infty}}\mathop{{{}_{{p+1}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p},\alpha\atop b_{1},\dots,b_{q}};\frac{z}{\alpha}\right)=\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right).

Thus in the case p=q the regular singularities of the function on the left-hand side at \alpha and \infty coalesce into an irregular singularity at \infty.

Next, if p\leq q+1 and |\mathop{\mathrm{ph}\/}\nolimits\beta|\leq\pi-\delta (<\pi), then

16.8.11\lim _{{|\beta|\to\infty}}\mathop{{{}_{{p}}F_{{q+1}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q},\beta};\beta z\right)=\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right),

provided that in the case p=q+1 we have |z|<1 when |\mathop{\mathrm{ph}\/}\nolimits\beta|\leq\frac{1}{2}\pi, and |z|<|\mathop{\sin\/}\nolimits\!\left(\mathop{\mathrm{ph}\/}\nolimits\beta\right)| when \frac{1}{2}\pi\leq|\mathop{\mathrm{ph}\/}\nolimits\beta|\leq\pi-\delta (<\pi).