32.7 Bäcklund Transformations32.9 Other Elementary Solutions

§32.8 Rational Solutions

Contents

§32.8(i) Introduction

\mbox{P}_{{\mbox{\scriptsize II}}}\mbox{P}_{{\mbox{\scriptsize VI}}} possess hierarchies of rational solutions for special values of the parameters which are generated from “seed solutions” using the Bäcklund transformations and often can be expressed in the form of determinants. See Airault (1979).

§32.8(ii) Second Painlevé Equation

Rational solutions of \mbox{P}_{{\mbox{\scriptsize II}}} exist for \alpha=n(\in\Integer) and are generated using the seed solution w(z;0)=0 and the Bäcklund transformations (32.7.1) and (32.7.2). The first four are

32.8.1w(z;1)=-\ifrac{1}{z},
32.8.2w(z;2)=\frac{1}{z}-\frac{3z^{2}}{z^{3}+4},
32.8.3w(z;3)=\frac{3z^{2}}{z^{3}+4}-\frac{6z^{2}(z^{3}+10)}{z^{6}+20z^{3}-80},
32.8.4w(z;4)=-\frac{1}{z}+\frac{6z^{2}(z^{3}+10)}{z^{6}+20z^{3}-80}-\frac{9z^{5}(z^{3}+40)}{z^{9}+60z^{6}+11200}.

More generally,

32.8.5w(z;n)=\frac{d}{dz}\left(\mathop{\ln\/}\nolimits\!\left(\frac{Q_{{n-1}}(z)}{Q_{n}(z)}\right)\right),

where the Q_{n}(z) are monic polynomials (coefficient of highest power of z is 1) satisfying

32.8.6Q_{{n+1}}(z)Q_{{n-1}}(z)={zQ_{n}^{2}(z)+4\left(Q_{n}^{{\prime}}(z)\right)^{2}-4Q_{n}(z)Q_{n}^{{\prime\prime}}(z)},

with Q_{0}(z)=1, Q_{1}(z)=z. Thus

32.8.7
Q_{2}(z)=z^{3}+4,
Q_{3}(z)=z^{6}+20z^{3}-80,
Q_{4}(z)=z^{{10}}+60z^{7}+11200z,
Q_{5}(z)=z^{{15}}+140z^{{12}}+2800z^{9}+78400z^{6}-3\; 13600z^{3}-62\; 72000,
Q_{6}(z)=z^{{21}}+280z^{{18}}+18480z^{{15}}+6\; 27200z^{{12}}-172\; 48000z^{9}+14488\; 32000z^{6}+1\; 93177\; 60000z^{3}-3\; 86355\; 20000.

Next, let p_{m}(z) be the polynomials defined by p_{m}(z)=0 for m<0, and

32.8.8\sum _{{m=0}}^{\infty}p_{m}(z)\lambda^{m}=\mathop{\exp\/}\nolimits\!\left(z\lambda-\tfrac{4}{3}\lambda^{3}\right).

Then for n\geq 2

32.8.9w(z;n)=\frac{d}{dz}\left(\mathop{\ln\/}\nolimits\!\left(\frac{\tau _{{n-1}}(z)}{\tau _{n}(z)}\right)\right),

where \tau _{n}(z) is the n\times n determinant

32.8.10\tau _{n}(z)=\begin{vmatrix}p_{1}(z)&p_{3}(z)&\cdots&p_{{2n-1}}(z)\\
p_{1}^{{\prime}}(z)&p_{3}^{{\prime}}(z)&\cdots&p_{{2n-1}}^{{\prime}}(z)\\
\vdots&\vdots&\ddots&\vdots\\
p_{1}^{{(n-1)}}(z)&p_{3}^{{(n-1)}}(z)&\cdots&p_{{2n-1}}^{{(n-1)}}(z)\end{vmatrix}.

For plots of the zeros of Q_{n}(z) see Clarkson and Mansfield (2003).

§32.8(iii) Third Painlevé Equation

Special rational solutions of \mbox{P}_{{\mbox{\scriptsize III}}} are

32.8.11w(z;\mu,-\mu\kappa^{2},\lambda,-\lambda\kappa^{4})=\kappa,
32.8.12w(z;0,-\mu,0,\mu\kappa)=\kappa z,
32.8.13w(z;2\kappa+3,-2\kappa+1,1,-1)=\dfrac{z+\kappa}{z+\kappa+1},

with \kappa, \lambda, and \mu arbitrary constants.

In the general case assume \gamma\delta\neq 0, so that as in §32.2(ii) we may set \gamma=1 and \delta=-1. Then \mbox{P}_{{\mbox{\scriptsize III}}} has rational solutions iff

32.8.14\alpha\pm\beta=4n,

with n\in\Integer. These solutions have the form

32.8.15w(z)=\ifrac{P_{m}(z)}{Q_{m}(z)},

where P_{m}(z) and Q_{m}(z) are polynomials of degree m, with no common zeros.

For examples and plots see Milne et al. (1997); also Clarkson (2003a). For determinantal representations see Kajiwara and Masuda (1999).

§32.8(iv) Fourth Painlevé Equation

Special rational solutions of \mbox{P}_{{\mbox{\scriptsize IV}}} are

32.8.16w_{1}(z;\pm 2,-2)=\pm\ifrac{1}{z},
32.8.17w_{2}(z;0,-2)=-2z,
32.8.18w_{3}(z;0,-\tfrac{2}{9})=-\tfrac{2}{3}z.

There are also three families of solutions of \mbox{P}_{{\mbox{\scriptsize IV}}} of the form

32.8.19w_{1}(z;\alpha _{1},\beta _{1})=\ifrac{P_{{1,n-1}}(z)}{Q_{{1,n}}(z)},
32.8.20w_{2}(z;\alpha _{2},\beta _{2})=-2z+(\ifrac{P_{{2,n-1}}(z)}{Q_{{2,n}}(z)}),
32.8.21w_{3}(z;\alpha _{3},\beta _{3})=-\tfrac{2}{3}z+(\ifrac{P_{{3,n-1}}(z)}{Q_{{3,n}}(z)}),

where P_{{j,n-1}}(z) and Q_{{j,n}}(z) are polynomials of degrees n-1 and n, respectively, with no common zeros.

In general, \mbox{P}_{{\mbox{\scriptsize IV}}} has rational solutions iff either

32.8.22
\alpha=m,
\beta=-2(1+2n-m)^{2},

or

32.8.23
\mspace{12.0mu}\alpha=m,
\beta=-2(\tfrac{1}{3}+2n-m)^{2},

with m,n\in\Integer. The rational solutions when the parameters satisfy (32.8.22) are special cases of §32.10(iv).

For examples and plots see Bassom et al. (1995); also Clarkson (2003b). For determinantal representations see Kajiwara and Ohta (1998) and Noumi and Yamada (1999).

§32.8(v) Fifth Painlevé Equation

Special rational solutions of \mbox{P}_{{\mbox{\scriptsize V}}} are

32.8.24w(z;\tfrac{1}{2},-\tfrac{1}{2}\mu^{2},\kappa(2-\mu),-\tfrac{1}{2}\kappa^{2})=\kappa z+\mu,
32.8.25w(z;\tfrac{1}{2},\kappa^{2}\mu,2\kappa\mu,\mu)=\kappa/(z+\kappa),
32.8.26w(z;\tfrac{1}{8},-\tfrac{1}{8},-\kappa\mu,\mu)=(\kappa+z)/(\kappa-z),

with \kappa and \mu arbitrary constants.

In the general case assume \delta\neq 0, so that as in §32.2(ii) we may set \delta=-\tfrac{1}{2}. Then \mbox{P}_{{\mbox{\scriptsize V}}} has a rational solution iff one of the following holds with m,n\in\Integer and \varepsilon=\pm 1:

  1. \alpha=\tfrac{1}{2}(m+\varepsilon\gamma)^{2} and \beta=-\tfrac{1}{2}n^{2}, where n>0, m+n is odd, and \alpha\neq 0 when |m|<n.

  2. \alpha=\tfrac{1}{2}n^{2} and \beta=-\tfrac{1}{2}(m+\varepsilon\gamma)^{2}, where n>0, m+n is odd, and \beta\neq 0 when |m|<n.

  3. \alpha=\tfrac{1}{2}a^{2}, \beta=-\tfrac{1}{2}(a+n)^{2}, and \gamma=m, with m+n even.

  4. \alpha=\tfrac{1}{2}(b+n)^{2}, \beta=-\tfrac{1}{2}b^{2}, and \gamma=m, with m+n even.

  5. \alpha=\tfrac{1}{8}(2m+1)^{2}, \beta=-\tfrac{1}{8}(2n+1)^{2}, and \gamma\notin\Integer.

These rational solutions have the form

32.8.27w(z)=\lambda z+\mu+(\ifrac{P_{{n-1}}(z)}{Q_{{n}}(z)}),

where \lambda, \mu are constants, and P_{{n-1}}(z), Q_{{n}}(z) are polynomials of degrees n-1 and n, respectively, with no common zeros. Cases (a) and (b) are special cases of §32.10(v).

For examples and plots see Clarkson (2005). For determinantal representations see Masuda et al. (2002). For the case \delta=0 see Airault (1979) and Lukaševič (1968).

§32.8(vi) Sixth Painlevé Equation

Special rational solutions of \mbox{P}_{{\mbox{\scriptsize VI}}} are

32.8.28w(z;\mu,-\mu\kappa^{2},\tfrac{1}{2},\tfrac{1}{2}-\mu(\kappa-1)^{2})=\kappa z,
32.8.29w(z;0,0,2,0)=\kappa z^{2},
32.8.30w(z;0,0,\tfrac{1}{2},-\tfrac{3}{2})=\ifrac{\kappa}{z},
32.8.31w(z;0,0,2,-4)=\ifrac{\kappa}{z^{2}},
32.8.32w(z;\tfrac{1}{2}(\kappa+\mu)^{2},-\tfrac{1}{2},\tfrac{1}{2}(\mu-1)^{2},\tfrac{1}{2}\kappa(2-\kappa))=\dfrac{z}{\kappa+\mu z},

with \kappa and \mu arbitrary constants.

In the general case, \mbox{P}_{{\mbox{\scriptsize VI}}} has rational solutions if

32.8.33a+b+c+d=2n+1,

where n\in\Integer, a=\varepsilon _{1}\sqrt{2\alpha}, b=\varepsilon _{2}\sqrt{-2\beta}, c=\varepsilon _{3}\sqrt{2\gamma}, and d=\varepsilon _{4}\sqrt{1-2\delta}, with \varepsilon _{j}=\pm 1, j=1,2,3,4, independently, and at least one of a, b, c or d is an integer. These are special cases of §32.10(vi).