-
R. Vein and P. Dale (1999)
Determinants and Their Applications in Mathematical Physics,
Applied Mathematical Sciences, Vol. 134, Springer-Verlag, New York.
-
G. Veneziano (1968)
Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories,
Il Nuovo Cimento A 57 (1), pp. 190–197.
-
P. Verbeeck (1970)
Rational approximations for exponential integrals 
,
Acad. Roy. Belg. Bull. Cl. Sci. (5) 56, pp. 1064–1072.
-
R. Vidūnas and N. M. Temme (2002)
Symbolic evaluation of coefficients in Airy-type asymptotic expansions,
J. Math. Anal. Appl. 269 (1), pp. 317–331.
-
R. Vidūnas (2005)
Transformations of some Gauss hypergeometric functions,
J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
-
L. Vietoris (1983)
Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochsschen Ungleichungen,
Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1-3), pp. 83–91 (German).
-
N. Ja. Vilenkin and A. U. Klimyk (1991)
Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms,
Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
-
N. Ja. Vilenkin and A. U. Klimyk (1992)
Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions,
Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
-
N. Ja. Vilenkin and A. U. Klimyk (1993)
Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms,
Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
-
N. Ja. Vilenkin (1968)
Special Functions and the Theory of Group Representations,
American Mathematical Society, Providence, RI.
-
I. M. Vinogradov (1937)
Representation of an odd number as a sum of three primes (Russian),
Dokl. Akad. Nauk SSSR 15, pp. 169–172 (Russian).
-
I. M. Vinogradov (1958)
A new estimate of the function 
,
Izv. Akad. Nauk SSSR. Ser. Mat. 22, pp. 161–164 (Russian).
-
N. Virchenko and I. Fedotova (2001)
Generalized Associated Legendre Functions and their Applications,
World Scientific Publishing Co. Inc., Singapore.
-
H. Volkmer (1999)
Expansions in products of Heine-Stieltjes polynomials,
Constr. Approx. 15 (4), pp. 467–480.
-
H. Volkmer (1982)
Integral relations for Lamé functions,
SIAM J. Math. Anal. 13 (6), pp. 978–987.
-
H. Volkmer (1983)
Integralgleichungen für periodische Lösungen Hill’scher Differentialgleichungen,
Analysis 3 (1-4), pp. 189–203 (German).
-
H. Volkmer (1984)
Integral representations for products of Lamé functions by use of fundamental solutions,
SIAM J. Math. Anal. 15 (3), pp. 559–569.
-
H. Volkmer (1998)
On the growth of convergence radii for the eigenvalues of the Mathieu equation,
Math. Nachr. 192, pp. 239–253.
-
H. Volkmer (2004a)
Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation,
Constr. Approx. 20 (1), pp. 39–54.
-
H. Volkmer (2004b)
Four remarks on eigenvalues of Lamé’s equation,
Anal. Appl. (Singap.) 2 (2), pp. 161–175.
-
H. Volkmer (2008)
Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials,
J. Comput. Appl. Math. 213 (2), pp. 488–500.
-
A. P. Vorob’ev (1965)
On the rational solutions of the second Painlevé equation,
Differ. Uravn. 1 (1), pp. 79–81 (Russian).
-
M. N. Vrahatis, T. N. Grapsa, O. Ragos and F. A. Zafiropoulos (1997a)
On the localization and computation of zeros of Bessel functions,
Z. Angew. Math. Mech. 77 (6), pp. 467–475.
-
M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos and T. N. Grapsa (1995)
RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions,
Comput. Phys. Comm. 92 (2-3), pp. 252–266.
-
M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos and T. N. Grapsa (1997b)
The topological degree theory for the localization and computation of complex zeros of Bessel functions,
Numer. Funct. Anal. Optim. 18 (1-2), pp. 227–234.