-
M. E. H. Ismail, J. Letessier, G. Valent and J. Wimp (1990)
Two families of associated Wilson polynomials,
Canad. J. Math. 42 (4), pp. 659–695.
-
M. E. H. Ismail and D. R. Masson (1994)
-Hermite polynomials, biorthogonal rational functions, and
-beta integrals,
Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
-
M. E. H. Ismail and D. R. Masson (1991)
Two families of orthogonal polynomials related to Jacobi polynomials,
Rocky Mountain J. Math. 21 (1), pp. 359–375.
-
M. E. H. Ismail and M. E. Muldoon (1995)
Bounds for the small real and purely imaginary zeros of Bessel and related functions,
Methods Appl. Anal. 2 (1), pp. 1–21.
-
M. E. H. Ismail (1986)
Asymptotics of the Askey-Wilson and
-Jacobi polynomials,
SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
-
M. E. H. Ismail (2000a)
An electrostatics model for zeros of general orthogonal polynomials,
Pacific J. Math. 193 (2), pp. 355–369.
-
M. E. H. Ismail (2000b)
More on electrostatic models for zeros of orthogonal polynomials,
Numer. Funct. Anal. Optim. 21 (1-2), pp. 191–204.
-
M. E. H. Ismail (2005)
Classical and Quantum Orthogonal Polynomials in One Variable,
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
-
M. E. H. Ismail and X. Li (1992)
Bound on the extreme zeros of orthogonal polynomials,
Proc. Amer. Math. Soc. 115 (1), pp. 131–140.
-
A. R. Its, A. S. Fokas and A. A. Kapaev (1994)
On the asymptotic analysis of the Painlevé equations via the isomonodromy method,
Nonlinearity 7 (5), pp. 1291–1325.
-
A. R. Its and A. A. Kapaev (1987)
The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent,
Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
-
A. R. Its and A. A. Kapaev (2003)
Quasi-linear Stokes phenomenon for the second Painlevé transcendent,
Nonlinearity 16 (1), pp. 363–386.
-
A. R. Its and A. A. Kapaev (1998)
Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution,
J. Phys. A 31 (17), pp. 4073–4113.
-
A. R. Its and V. Yu. Novokshënov (1986)
The Isomonodromic Deformation Method in the Theory of Painlevé Equations,
Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
-
C. Itzykson and J. Drouffe (1989)
Statistical Field Theory: Strong Coupling, Monte Carlo Methods, Conformal Field Theory, and Random Systems,
Vol. 2, Cambridge University Press, Cambridge.
-
C. Itzykson and J. B. Zuber (1980)
Quantum Field Theory,
International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
-
A. Ivić (1985)
The Riemann Zeta-Function,
A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
-
K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida (1991)
From Gauss to Painlevé: A Modern Theory of Special Functions,
Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.