-
K. Takasaki (2001)
Painlevé-Calogero correspondence revisited,
J. Math. Phys. 42 (3), pp. 1443–1473.
-
Y. Takei (1995)
On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis,
Sūrikaisekikenkyūsho Kōkyūroku (931), pp. 70–99.
-
T. Takemasa, T. Tamura and H. H. Wolter (1979)
Coulomb functions with complex angular momenta,
Comput. Phys. Comm. 17 (4), pp. 351–355.
-
A. Takemura (1984)
Zonal Polynomials,
Institute of Mathematical Statistics Lecture Notes—Monograph
Series, 4, Institute of Mathematical Statistics, Hayward, CA.
-
J. D. Talman (1983)
LSFBTR: A subroutine for calculating spherical Bessel transforms,
Comput. Phys. Comm. 30 (1), pp. 93–99.
-
T. Tamura (1970)
Angular momentum coupling coefficients,
Comput. Phys. Comm. 1 (5), pp. 337–342.
-
I. C. Tang (1969)
Some definite integrals and Fourier series for Jacobian elliptic functions,
Z. Angew. Math. Mech. 49, pp. 95–96.
-
J. W. Tanner and S. S. Wagstaff (1987)
New congruences for the Bernoulli numbers,
Math. Comp. 48 (177), pp. 341–350.
-
G. Taubmann (1992)
Comput. Phys. Commun. 69, pp. 415–419.
-
J. G. Taylor (1978)
Error bounds for the Liouville-Green approximation to initial-value problems,
Z. Angew. Math. Mech. 58 (12), pp. 529–537.
-
J. G. Taylor (1982)
Improved error bounds for the Liouville-Green (or WKB) approximation,
J. Math. Anal. Appl. 85 (1), pp. 79–89.
-
N. M. Temme and J. L. López (2001)
The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis,
J. Comput. Appl. Math. 133 (1-2), pp. 623–633.
-
N. M. Temme and A. B. Olde Daalhuis (1990)
Uniform asymptotic approximation of Fermi-Dirac integrals,
J. Comput. Appl. Math. 31 (3), pp. 383–387.
-
N. M. Temme (1975)
On the numerical evaluation of the modified Bessel function of the third kind,
J. Comput. Phys. 19 (3), pp. 324–337.
-
N. M. Temme (1976)
On the numerical evaluation of the ordinary Bessel function of the second kind,
J. Computational Phys. 21 (3), pp. 343–350.
-
N. M. Temme (1978)
Uniform asymptotic expansions of confluent hypergeometric functions,
J. Inst. Math. Appl. 22 (2), pp. 215–223.
-
N. M. Temme (1979a)
An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives,
J. Comput. Phys. 32 (2), pp. 270–279.
-
N. M. Temme (1979b)
The asymptotic expansion of the incomplete gamma functions,
SIAM J. Math. Anal. 10 (4), pp. 757–766.
-
N. M. Temme (1983)
The numerical computation of the confluent hypergeometric function 
,
Numer. Math. 41 (1), pp. 63–82.
-
N. M. Temme (1985)
Laplace type integrals: Transformation to standard form and uniform asymptotic expansions,
Quart. Appl. Math. 43 (1), pp. 103–123.
-
N. M. Temme (1986)
Laguerre polynomials: Asymptotics for large degree,
Technical report
Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
-
N. M. Temme (1987)
On the computation of the incomplete gamma functions for large values of the parameters,
in Algorithms for approximation (Shrivenham, 1985),
Inst. Math. Appl. Conf. Ser. New Ser., Vol. 10, pp. 479–489.
-
N. M. Temme (1990a)
Asymptotic estimates for Laguerre polynomials,
Z. Angew. Math. Phys. 41 (1), pp. 114–126.
-
N. M. Temme (1990b)
Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions,
SIAM J. Math. Anal. 21 (1), pp. 241–261.
-
N. M. Temme (1992a)
Asymptotic inversion of incomplete gamma functions,
Math. Comp. 58 (198), pp. 755–764.
-
N. M. Temme (1992b)
Asymptotic inversion of the incomplete beta function,
J. Comput. Appl. Math. 41 (1-2), pp. 145–157.
-
N. M. Temme (1993)
Asymptotic estimates of Stirling numbers,
Stud. Appl. Math. 89 (3), pp. 233–243.
-
N. M. Temme (1994a)
A set of algorithms for the incomplete gamma functions,
Probab. Engrg. Inform. Sci. 8, pp. 291–307.
-
N. M. Temme (1994b)
Computational aspects of incomplete gamma functions with large complex parameters,
in Approximation and Computation. A Festschrift in Honor
of Walter Gautschi.,
International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
-
N. M. Temme (1994c)
Steepest descent paths for integrals defining the modified Bessel functions of imaginary order,
Methods Appl. Anal. 1 (1), pp. 14–24.
-
N. M. Temme (1995a)
Asymptotics of zeros of incomplete gamma functions,
Ann. Numer. Math. 2 (1-4), pp. 415–423.
-
N. M. Temme (1995b)
Bernoulli polynomials old and new: Generalizations and asymptotics,
CWI Quarterly 8 (1), pp. 47–66.
-
N. M. Temme (1995c)
Uniform asymptotic expansions of integrals: A selection of problems,
J. Comput. Appl. Math. 65 (1-3), pp. 395–417.
-
N. M. Temme (1996a)
Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters,
Methods Appl. Anal. 3 (3), pp. 335–344.
-
N. M. Temme (1997)
Numerical algorithms for uniform Airy-type asymptotic expansions,
Numer. Algorithms 15 (2), pp. 207–225.
-
N. M. Temme (1978)
The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions,
Report TW 183/78
Mathematisch Centrum, Amsterdam, Afdeling Toegepaste
Wiskunde.
-
N. M. Temme (1996b)
Special Functions: An Introduction to the Classical Functions of Mathematical Physics,
John Wiley & Sons Inc., New York.
-
N. M. Temme (2000)
Numerical and asymptotic aspects of parabolic cylinder functions,
J. Comput. Appl. Math. 121 (1-2), pp. 221–246.
-
N. M. Temme (2003)
Large parameter cases of the Gauss hypergeometric function,
J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
-
A. Terras (1988)
Harmonic Analysis on Symmetric Spaces and Applications. II,
Springer-Verlag, Berlin.
-
A. Terras (1999)
Fourier Analysis on Finite Groups and Applications,
London Mathematical Society Student Texts, Vol. 43, Cambridge University Press, Cambridge.
-
S. A. Teukolsky (1972)
Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations,
Phys. Rev. Lett. 29 (16), pp. 1114–1118.
-
H. C. Thacher Jr. (1963)
Algorithm 165: Complete elliptic integrals,
Comm. ACM 6 (4), pp. 163–164.
-
I. J. Thompson and A. R. Barnett (1985)
COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments,
Comput. Phys. Comm. 36 (4), pp. 363–372.