36.8 Convergent Series Expansions36.10 Differential Equations

§36.9 Integral Identities

36.9.1|\mathop{\Psi _{{1}}\/}\nolimits\!\left(x\right)|^{2}=2^{{5/3}}\int _{0}^{\infty}\mathop{\Psi _{{1}}\/}\nolimits\!\left(2^{{2/3}}(3u^{2}+x)\right)du;

equivalently,

36.9.2(\mathop{\mathrm{Ai}\/}\nolimits\!\left(x\right))^{2}=\frac{2^{{2/3}}}{\pi}\int _{0}^{\infty}\mathop{\mathrm{Ai}\/}\nolimits\!\left(2^{{2/3}}(u^{2}+x)\right)du.
36.9.8\left|\mathop{\Psi^{{(\mathrm{H})}}\/}\nolimits\!\left(x,y,z\right)\right|^{2}=8\pi^{2}\left(\frac{2}{9}\right)^{{1/3}}\int _{{-\infty}}^{\infty}\int _{{-\infty}}^{\infty}\mathop{\mathrm{Ai}\/}\nolimits\!\left(\left(\frac{4}{3}\right)^{{1/3}}(x+zv+3u^{2})\right)\mathop{\mathrm{Ai}\/}\nolimits\!\left(\left(\frac{4}{3}\right)^{{1/3}}(y+zu+3v^{2})\right)dudv.
36.9.9\left|\mathop{\Psi^{{(\mathrm{E})}}\/}\nolimits\!\left(x,y,z\right)\right|^{2}=\frac{8\pi^{2}}{3^{{2/3}}}\int _{0}^{\infty}\int _{0}^{{2\pi}}\realpart{}\left(\mathop{\mathrm{Ai}\/}\nolimits\!\left(\frac{1}{3^{{1/3}}}\left(x+iy+2zu\mathop{\exp\/}\nolimits\!\left(i\theta\right)+3u^{2}\mathop{\exp\/}\nolimits\!\left(-2i\theta\right)\right)\right)\*\mathop{\mathrm{Bi}\/}\nolimits\!\left(\frac{1}{3^{{1/3}}}\left(x-iy+2zu\mathop{\exp\/}\nolimits\!\left(-i\theta\right)+3u^{2}\mathop{\exp\/}\nolimits\!\left(2i\theta\right)\right)\right)\right)udud\theta.

For these results and also integrals over doubly-infinite intervals see Berry and Wright (1980). This reference also provides a physical interpretation in terms of Lagrangian manifolds and Wigner functions in phase space.