8.6 Integral Representations8.8 Recurrence Relations and Derivatives

§8.7 Series Expansions

For the functions e_{n}(z), \mathop{{\mathsf{i}^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right), and \mathop{L^{{(\alpha)}}_{{n}}\/}\nolimits\!\left(x\right) see (8.4.11), §§10.47(ii), and 18.3, respectively.

8.7.1\mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right)=e^{{-z}}\sum _{{k=0}}^{\infty}\frac{z^{k}}{\mathop{\Gamma\/}\nolimits\!\left(a+k+1\right)}=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\sum _{{k=0}}^{\infty}\frac{(-z)^{k}}{k!(a+k)}.
8.7.2\mathop{\gamma\/}\nolimits\!\left(a,x+y\right)-\mathop{\gamma\/}\nolimits\!\left(a,x\right)=\mathop{\Gamma\/}\nolimits\!\left(a,x\right)-\mathop{\Gamma\/}\nolimits\!\left(a,x+y\right)=e^{{-x}}x^{{a-1}}\sum _{{n=0}}^{\infty}\frac{\left(1-a\right)_{{n}}}{(-x)^{n}}(1-e^{{-y}}e_{n}(y)),|y|<|x|.
8.7.3\mathop{\Gamma\/}\nolimits\!\left(a,z\right)=\mathop{\Gamma\/}\nolimits\!\left(a\right)-\sum _{{k=0}}^{\infty}\frac{(-1)^{k}z^{{a+k}}}{k!(a+k)}=\mathop{\Gamma\/}\nolimits\!\left(a\right)\left(1-z^{a}e^{{-z}}\sum _{{k=0}}^{\infty}\frac{z^{k}}{\mathop{\Gamma\/}\nolimits\!\left(a+k+1\right)}\right),a\neq 0,-1,-2,\dots.
8.7.4\mathop{\gamma\/}\nolimits\!\left(a,x\right)=\mathop{\Gamma\/}\nolimits\!\left(a\right)x^{{\frac{1}{2}a}}e^{{-x}}\sum _{{n=0}}^{\infty}e_{n}(-1)x^{{\frac{1}{2}n}}\mathop{I_{{n+a}}\/}\nolimits\!\left(\textstyle 2x^{{1/2}}\right),a\neq 0,-1,-2,\dots.
8.7.5\mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right)=e^{{-\frac{1}{2}z}}\sum _{{n=0}}^{\infty}\frac{\left(1-a\right)_{{n}}}{\mathop{\Gamma\/}\nolimits\!\left(n+a+1\right)}{\left(2n+1\right)}\mathop{{\mathsf{i}^{{(1)}}_{{n}}}\/}\nolimits\!\left(\tfrac{1}{2}z\right).
8.7.6\mathop{\Gamma\/}\nolimits\!\left(a,x\right)=x^{a}e^{{-x}}\sum _{{n=0}}^{\infty}\frac{\mathop{L^{{(a)}}_{{n}}\/}\nolimits\!\left(x\right)}{n+1},x>0.

For an expansion for \mathop{\gamma\/}\nolimits\!\left(a,ix\right) in series of Bessel functions \mathop{J_{{n}}\/}\nolimits\!\left(x\right) that converges rapidly when a>0 and x (\geq 0) is small or moderate in magnitude see Barakat (1961).