Notations *

: factorial; Common Notations and Definitions
:
-factorial; §5.18(i)
: double factorial; Common Notations and Definitions
: vector dot (or scalar) product; (1.6.2)
: convolution for Fourier transforms; (1.14.5)
: convolution for Laplace transforms; (1.14.30)
: convolution product; (2.6.34)
: convolution for Mellin transforms; (1.14.39)
: Cartesian product of groups
and
; §23.1
: vector cross product; (1.6.9)
- implies; Common Notations and Definitions

- is equivalent to; Common Notations and Definitions

: set of all elements of
modulo elements of
; §21.1
- set subtraction; Common Notations and Definitions

- asymptotic equality; (2.1.1)

- backward difference operator; ¶ ‣ §3.10(iii)

- del operator; (1.6.19)

- Laplacian for polar coordinates; ¶ ‣ §1.5(ii)

- Laplacian; ¶ ‣ §1.5(ii)

- Laplacian for spherical coordinates; ¶ ‣ §1.5(ii)

- Laplacian for cylindrical coordinates; ¶ ‣ §1.5(ii)

- gradient of differentiable scalar function
; (1.6.20) 
- divergence of vector-valued function
; (1.6.21) 
- curl of vector-valued function
; (1.6.22) 
- integral; §1.4(iv)

- Cauchy principal value; (1.4.24)

- loop integral in
: path begins at
, encircles
once in the positive sense, and returns to
.; ¶ ‣ §5.9(i) 
- Pochhammer’s loop integral; ¶ ‣ §5.12

-integral; §17.2(v)
- complex conjugate; (1.9.11)

- modulus (or absolute value); (1.9.7)

- magnitude of vector; (1.6.3)

-norm of a matrix; §3.2(iii)
- Euclidean norm of a vector; §3.2(iii)

- infinity (or maximum) norm of a vector; §3.2(iii)

-norm of a vector; §3.2(iii)
- limit on right (or from above); (1.4.1)

- limit on left (or from below); (1.4.3)
![f^{{[n]}}(z)](.././not/m90.png)
th
-derivative; §17.2(iv)
- falling factorial; ¶ ‣ §26.1

- rising factorial; ¶ ‣ §26.1

- continued fraction; §1.12(i)

- Pochhammer’s symbol; §5.2(iii)

- alternative notation; §5.1
(with
: gamma function) 
- open interval; Common Notations and Definitions
![(a,b]](.././not/m5.png)
- half-closed interval; Common Notations and Definitions

- Jacobi symbol; §27.9

- Legendre symbol; §27.9

-factorial (or
-shifted factorial); §17.2(i)
-factorial (or
-shifted factorial); §5.18(i)
-shifted factorial (generalized); §17.2(i)
-shifted factorial; §17.2(i)
- multiple
-shifted factorial; §17.2(i) 
- multiple
-shifted factorial; §17.2(i) 
- notation used by Dingle (1973); §8.1
(with
: incomplete gamma function) 
- Clebsch–Gordan coefficient; §34.1

- binomial coefficient; §26.3(i)

- binomial coefficient; (1.2.1)

- multinomial coefficient; §26.4(i)

symbol; (34.2.4)
- tempered distribution; (2.6.11)

- distribution; §1.16(i)

- Dirac delta distribution; §1.16(iii)

- Eulerian number; §26.14(i)

- floor of
; Common Notations and Definitions 
- ceiling of
; Common Notations and Definitions ![[z_{0},z_{1},\dots,z_{n}]](.././not/m21.png)
- divided difference; §3.3(iii)
![\left[a\right]_{{\kappa}}](.././not/m44.png)
- partitional shifted factorial; (35.4.1)

- half-closed interval; Common Notations and Definitions
![[a,b]](.././not/m19.png)
- closed interval; Common Notations and Definitions
![\mathop{{[p/q]_{{f}}}\/}\nolimits](.././not/m65.png)
- Padé approximant; §3.11(iv)
![[a,z]!=\mathop{\Gamma\/}\nolimits\!\left(a+1,z\right)](.././not/m20.png)
- notation used by Dingle (1973); §8.1
(with
: incomplete gamma function) ![\left[n\atop k\right]](.././not/m46.png)
- Stirling cycle number; §26.13
![\genfrac{[}{]}{0.0pt}{}{n}{m}_{{q}}](.././not/m32.png)
-binomial coefficient (or Gaussian polynomial); (17.2.27)![\genfrac{[}{]}{0.0pt}{}{n}{m}_{{q}}](.././not/m32.png)
-binomial coefficient (or Gaussian polynomial); §26.9(ii)![\left[n\atop k\right]=\mathop{s\/}\nolimits\!\left(n,k\right)/(-1)^{{n-k}}](.././not/m45.png)
- notation used by Knuth (1992), Graham et al. (1994), Rosen et al. (2000); ¶ ‣ §26.1
(with
: Stirling number of the first kind) ![\genfrac{[}{]}{0.0pt}{}{a_{1}+a_{2}+\dots+a_{n}}{a_{1},a_{2},\ldots,a_{n}}_{{q}}](.././not/m31.png)
-multinomial coefficient; §26.16
- sequence, asymptotic sequence (or scale), or enumerable set; §2.1(v)

- Schwarzian derivative; (1.13.20)

- notation used by Knuth (1992), Graham et al. (1994), Rosen et al. (2000); ¶ ‣ §26.1
(with
: Stirling number of the second kind) 
symbol; (34.4.1)
symbol; (34.6.1)

