2.2 Transcendental Equations2.4 Contour Integrals

§2.3 Integrals of a Real Variable

Contents

§2.3(i) Integration by Parts

Assume that the Laplace transform

2.3.1\int _{{0}}^{{\infty}}e^{{-xt}}q(t)dt

converges for all sufficiently large x, and q(t) is infinitely differentiable in a neighborhood of the origin. Then

2.3.2\int _{{0}}^{{\infty}}e^{{-xt}}q(t)dt\sim\sum _{{s=0}}^{{\infty}}\frac{q^{{(s)}}(0)}{x^{{s+1}}},x\to+\infty.

If, in addition, q(t) is infinitely differentiable on [0,\infty) and

2.3.3\sigma _{n}=\sup _{{(0,\infty)}}(t^{{-1}}\mathop{\ln\/}\nolimits|q^{{(n)}}(t)/q^{{(n)}}(0)|)

is finite and bounded for n=0,1,2,\dots, then the nth error term (that is, the difference between the integral and nth partial sum in (2.3.2)) is bounded in absolute value by |q^{{(n)}}(0)/(x^{n}(x-\sigma _{n}))| when x exceeds both 0 and \sigma _{n}.

For the Fourier integral

\int _{a}^{b}e^{{ixt}}q(t)dt

assume a and b are finite, and q(t) is infinitely differentiable on [a,b]. Then

2.3.4\int _{a}^{b}e^{{ixt}}q(t)dt\sim e^{{iax}}\sum _{{s=0}}^{{\infty}}q^{{(s)}}(a)\left(\frac{i}{x}\right)^{{s+1}}-e^{{ibx}}\sum _{{s=0}}^{{\infty}}q^{{(s)}}(b)\left(\frac{i}{x}\right)^{{s+1}},x\to+\infty.

Alternatively, assume b=\infty, q(t) is infinitely differentiable on [a,\infty), and each of the integrals \int e^{{ixt}}q^{{(s)}}(t)dt, s=0,1,2,\dots, converges as t\to\infty uniformly for all sufficiently large x. Then

2.3.5\int _{{a}}^{{\infty}}e^{{ixt}}q(t)dt\sim e^{{iax}}\sum _{{s=0}}^{{\infty}}q^{{(s)}}(a)\left(\frac{i}{x}\right)^{{s+1}},x\to+\infty.

In both cases the nth error term is bounded in absolute value by x^{{-n}}\mathop{\mathcal{V}_{{a,b}}\/}\nolimits\!\left(q^{{(n-1)}}(t)\right), where the variational operator \mathop{\mathcal{V}_{{a,b}}\/}\nolimits is defined by

2.3.6\mathop{\mathcal{V}_{{a,b}}\/}\nolimits\!\left(f(t)\right)=\int _{a}^{b}|f^{{\prime}}(t)dt|;

see §1.4(v). For other examples, see Wong (1989, Chapter 1).

§2.3(ii) Watson’s Lemma

Assume again that the integral (2.3.1) converges for all sufficiently large x, but now

2.3.7q(t)\sim\sum _{{s=0}}^{{\infty}}a_{s}t^{{(s+\lambda-\mu)/\mu}},t\to 0+,

where \lambda and \mu are positive constants. Then the series obtained by substituting (2.3.7) into (2.3.1) and integrating formally term by term yields an asymptotic expansion:

2.3.8\int _{{0}}^{{\infty}}e^{{-xt}}q(t)dt\sim\sum _{{s=0}}^{{\infty}}\mathop{\Gamma\/}\nolimits\!\left(\frac{s+\lambda}{\mu}\right)\frac{a_{s}}{x^{{(s+\lambda)/\mu}}},x\to+\infty.

For the function \mathop{\Gamma\/}\nolimits see §5.2(i).

This result is probably the most frequently used method for deriving asymptotic expansions of special functions. Since q(t) need not be continuous (as long as the integral converges), the case of a finite integration range is included.

Other types of singular behavior in the integrand can be treated in an analogous manner. For example,

2.3.9\int _{{0}}^{{\infty}}e^{{-xt}}q(t)\mathop{\ln\/}\nolimits tdt\sim\sum _{{s=0}}^{{\infty}}{\mathop{\Gamma\/}\nolimits^{{\prime}}}\!\left(\frac{s+\lambda}{\mu}\right)\frac{a_{s}}{x^{{(s+\lambda)/\mu}}}-(\mathop{\ln\/}\nolimits x)\sum _{{s=0}}^{{\infty}}\mathop{\Gamma\/}\nolimits\!\left(\frac{s+\lambda}{\mu}\right)\frac{a_{s}}{x^{{(s+\lambda)/\mu}}},

provided that the integral on the left-hand side of (2.3.9) converges for all sufficiently large values of x. (In other words, differentiation of (2.3.8) with respect to the parameter \lambda (or \mu) is legitimate.)

Another extension is to more general factors than the exponential function. In addition to (2.3.7) assume that f(t) and q(t) are piecewise continuous (§1.4(ii)) on (0,\infty), and

2.3.10|f(t)|\leq A\mathop{\exp\/}\nolimits\!\left(-at^{{\kappa}}\right),0\leq t<\infty,
2.3.11q(t)=\mathop{O\/}\nolimits\!\left(\mathop{\exp\/}\nolimits\!\left(bt^{{\kappa}}\right)\right),t\to+\infty,

where A,a,b,\kappa are positive constants. Then

2.3.12\int _{{0}}^{{\infty}}f(xt)q(t)dt\sim\sum _{{s=0}}^{{\infty}}\mathop{\mathscr{M}\/}\nolimits\left(f;\frac{s+\lambda}{\mu}\right)\frac{a_{s}}{x^{{(s+\lambda)/\mu}}},x\to+\infty,

where \mathop{\mathscr{M}\/}\nolimits\left(f;\alpha\right) is the Mellin transform of f(t)2.5(i)).

For a more detailed treatment of the integral (2.3.12) see §§2.5, 2.6.

§2.3(iii) Laplace’s Method

When p(t) is real and x is a large positive parameter, the main contribution to the integral

2.3.13I(x)=\int _{a}^{b}e^{{-xp(t)}}q(t)dt

derives from the neighborhood of the minimum of p(t) in the integration range. Without loss of generality, we assume that this minimum is at the left endpoint a. Furthermore:

  1. (a)

    p^{{\prime}}(t) and q(t) are continuous in a neighborhood of a, save possibly at a, and the minimum of p(t) in [a,b) is approached only at a.

  2. (b)

    As t\to a+

    2.3.14
    p(t)\sim p(a)+\sum _{{s=0}}^{{\infty}}p_{s}(t-a)^{{s+\mu}},
    q(t)\sim\sum _{{s=0}}^{{\infty}}q_{s}(t-a)^{{s+\lambda-1}},

    and the expansion for p(t) is differentiable. Again \lambda and \mu are positive constants. Also p_{0}>0 (consistent with (a)).

  3. (c)

    The integral (2.3.13) converges absolutely for all sufficiently large x.

Watson’s lemma can be regarded as a special case of this result.

For error bounds for Watson’s lemma and Laplace’s method see Boyd (1993) and Olver (1997b, Chapter 3). These references and Wong (1989, Chapter 2) also contain examples.

§2.3(iv) Method of Stationary Phase

When the parameter x is large the contributions from the real and imaginary parts of the integrand in

2.3.19I(x)=\int _{a}^{b}e^{{ixp(t)}}q(t)dt

oscillate rapidly and cancel themselves over most of the range. However, cancellation does not take place near the endpoints, owing to lack of symmetry, nor in the neighborhoods of zeros of p^{{\prime}}(t) because p(t) changes relatively slowly at these stationary points.

The first result is the analog of Watson’s lemma (§2.3(ii)). Assume that q(t) again has the expansion (2.3.7) and this expansion is infinitely differentiable, q(t) is infinitely differentiable on (0,\infty), and each of the integrals \int e^{{ixt}}q^{{(s)}}(t)dt, s=0,1,2,\dots, converges at t=\infty, uniformly for all sufficiently large x. Then

2.3.20\int _{{0}}^{{\infty}}e^{{ixt}}q(t)dt\sim\sum _{{s=0}}^{{\infty}}\mathop{\exp\/}\nolimits\!\left(\frac{(s+\lambda)\pi i}{2\mu}\right)\mathop{\Gamma\/}\nolimits\!\left(\frac{s+\lambda}{\mu}\right)\frac{a_{s}}{x^{{(s+\lambda)/\mu}}},x\to+\infty,

where the coefficients a_{s} are given by (2.3.7).

For the more general integral (2.3.19) we assume, without loss of generality, that the stationary point (if any) is at the left endpoint. Furthermore:

  1. (a)

    On (a,b), p(t) and q(t) are infinitely differentiable and p^{{\prime}}(t)>0.

  2. (b)

    As t\to a+ the asymptotic expansions (2.3.14) apply, and each is infinitely differentiable. Again \lambda, \mu, and p_{0} are positive.

  3. (c)

    If the limit p(b) of p(t) as t\to b- is finite, then each of the functions

    2.3.21P_{s}(t)=\left(\frac{1}{p^{{\prime}}(t)}\frac{d}{dt}\right)^{s}\frac{q(t)}{p^{{\prime}}(t)},s=0,1,2,\dots,

    tends to a finite limit P_{s}(b).

  4. (d)

    If p(b)=\infty, then P_{0}(b)=0 and each of the integrals

    2.3.22\int e^{{ixp(t)}}P_{s}(t)p^{{\prime}}(t)dt,s=0,1,2,\dots,

    converges at t=b uniformly for all sufficiently large x.

If p(b) is finite, then both endpoints contribute:

2.3.23\int _{a}^{b}e^{{ixp(t)}}q(t)dt\sim e^{{ixp(a)}}\sum _{{s=0}}^{{\infty}}\mathop{\exp\/}\nolimits\!\left(\frac{(s+\lambda)\pi i}{2\mu}\right)\mathop{\Gamma\/}\nolimits\!\left(\frac{s+\lambda}{\mu}\right)\frac{b_{s}}{x^{{(s+\lambda)/\mu}}}-e^{{ixp(b)}}\sum _{{s=0}}^{{\infty}}P_{s}(b)\left(\frac{i}{x}\right)^{{s+1}},x\to+\infty.

But if (d) applies, then the second sum is absent. The coefficients b_{s} are defined as in §2.3(iii).

For proofs of the results of this subsection, error bounds, and an example, see Olver (1974). For other estimates of the error term see Lyness (1971). For extensions to oscillatory integrals with logarithmic singularities see Wong and Lin (1978).

§2.3(v) Coalescing Peak and Endpoint: Bleistein’s Method

In the integral

2.3.24I(\alpha,x)=\int _{0}^{k}e^{{-xp(\alpha,t)}}q(\alpha,t)t^{{\lambda-1}}dt

k (\leq\infty) and \lambda are positive constants, \alpha is a variable parameter in an interval \alpha _{1}\leq\alpha\leq\alpha _{2} with \alpha _{1}\leq 0 and 0<\alpha _{2}\leq k, and x is a large positive parameter. Assume also that \ifrac{{\partial}^{2}p(\alpha,t)}{{\partial t}^{2}} and q(\alpha,t) are continuous in \alpha and t, and for each \alpha the minimum value of p(\alpha,t) in [0,k) is at t=\alpha, at which point \ifrac{\partial p(\alpha,t)}{\partial t} vanishes, but both \ifrac{{\partial}^{2}p(\alpha,t)}{{\partial t}^{2}} and q(\alpha,t) are nonzero. When x\to+\infty Laplace’s method (§2.3(iii)) applies, but the form of the resulting approximation is discontinuous at \alpha=0. In consequence, the approximation is nonuniform with respect to \alpha and deteriorates severely as \alpha\to 0.

A uniform approximation can be constructed by quadratic change of integration variable:

2.3.25p(\alpha,t)=\tfrac{1}{2}w^{2}-aw+b,

where a and b are functions of \alpha chosen in such a way that t=0 corresponds to w=0, and the stationary points t=\alpha and w=a correspond. Thus

2.3.26
a=(2p(\alpha,0)-2p(\alpha,\alpha))^{{1/2}},
b=p(\alpha,0),
2.3.27w=(2p(\alpha,0)-2p(\alpha,\alpha))^{{1/2}}\pm(2p(\alpha,t)-2p(\alpha,\alpha))^{{1/2}},

the upper or lower sign being taken according as t\gtrless\alpha. The relationship between t and w is one-to-one, and because

2.3.28\frac{dw}{dt}=\pm\frac{1}{(2p(\alpha,t)-2p(\alpha,\alpha))^{{1/2}}}\frac{\partial p(\alpha,t)}{\partial t}

it is free from singularity at t=\alpha.

The integral (2.3.24) transforms into

2.3.29I(\alpha,x)=e^{{-xp(\alpha,0)}}\*\int _{{0}}^{{\kappa}}\mathop{\exp\/}\nolimits\!\left(-x\left(\tfrac{1}{2}w^{2}-aw\right)\right)f(\alpha,w)w^{{\lambda-1}}dw,

where

2.3.30f(\alpha,w)=q(\alpha,t)\left(\frac{t}{w}\right)^{{\lambda-1}}\frac{dt}{dw},

\kappa=\kappa(\alpha) being the value of w at t=k. We now expand f(\alpha,w) in a Taylor series centered at the peak value w=a of the exponential factor in the integrand:

2.3.31f(\alpha,w)=\sum _{{s=0}}^{{\infty}}\phi _{s}(\alpha)(w-a)^{s},

with the coefficients \phi _{s}(\alpha) continuous at \alpha=0. The desired uniform expansion is then obtained formally as in Watson’s lemma and Laplace’s method. We replace the limit \kappa by \infty and integrate term-by-term:

2.3.32I(\alpha,x)\sim\frac{e^{{-xp(\alpha,0)}}}{x^{{\lambda/2}}}\sum _{{s=0}}^{{\infty}}\phi _{s}(\alpha)\frac{F_{s}(a\sqrt{x})}{x^{{s/2}}},x\to\infty,

where

2.3.33F_{s}(y)=\int _{{0}}^{{\infty}}\mathop{\exp\/}\nolimits\!\left(-\tfrac{1}{2}\tau^{2}+y\tau\right)(\tau-y)^{s}\tau^{{\lambda-1}}d\tau.

For examples and proofs see Olver (1997b, Chapter 9), Bleistein (1966), Bleistein and Handelsman (1975, Chapter 9), and Wong (1989, Chapter 7).