36.5 Stokes Sets36.7 Zeros

§36.6 Scaling Relations

Indices for k-Scaling of Magnitude of \mathop{\Psi _{{K}}\/}\nolimits or \mathop{\Psi^{{(\mathrm{U})}}\/}\nolimits (Singularity Index)

36.6.3
\text{cuspoids: }\beta _{K}=\dfrac{K}{2(K+2)},
\text{umbilics: }\beta^{{(\mathrm{U})}}=\frac{1}{3}.

Indices for k-Scaling of Coordinates x_{m}

Indices for k-Scaling of \mathbf{x} Hypervolume

36.6.5
\text{cuspoids: }\gamma _{K}=\sum\limits _{{m=1}}^{K}\gamma _{{mK}}=\dfrac{K(K+3)}{2(K+2)},
\text{umbilics: }\gamma^{{(\mathrm{U})}}=\sum\limits _{{m=1}}^{3}\gamma _{m}^{{(\mathrm{U})}}=\tfrac{5}{3}.
Table 36.6.1: Special cases of scaling exponents for cuspoids.
singularity K \beta _{K} \gamma _{{1K}} \gamma _{{2K}} \gamma _{{3K}} \gamma _{K}
fold 1 \frac{1}{6} \frac{2}{3} - - \frac{2}{3}
cusp 2 \frac{1}{4} \frac{3}{4} \frac{1}{2} - \frac{5}{4}
swallowtail 3 \frac{3}{10} \frac{4}{5} \frac{3}{5} \frac{2}{5} \frac{9}{5}

For the results in this section and more extensive lists of exponents see Berry (1977) and Varčenko (1976).