17 q-Hypergeometric and Related Functions17.2 Calculus

§17.1 Special Notation

(For other notation see Notation for the Special Functions.)

k,j,m,n,r,s nonnegative integers.
z complex variable.
x real variable.
q(\in\Complex) base: unless stated otherwise |q|<1.
\left(a;q\right)_{{n}} q-shifted factorial: (1-a)(1-aq)\cdots\left(1-aq^{{n-1}}\right).

The main functions treated in this chapter are the basic hypergeometric (or q-hypergeometric) function \mathop{{{}_{{r}}\phi _{{s}}}\/}\nolimits\!\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right), the bilateral basic hypergeometric (or bilateral q-hypergeometric) function \mathop{{{}_{{r}}\psi _{{s}}}\/}\nolimits\!\left(a_{1},a_{2},\dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right), and the q-analogs of the Appell functions \mathop{\Phi^{{(1)}}\/}\nolimits\!\left(a;b,b^{{\prime}};c;x,y\right), \mathop{\Phi^{{(2)}}\/}\nolimits\!\left(a;b,b^{{\prime}};c,c^{{\prime}};x,y\right), \mathop{\Phi^{{(3)}}\/}\nolimits\!\left(a,a^{{\prime}};b,b^{{\prime}};c;x,y\right), and \mathop{\Phi^{{(4)}}\/}\nolimits\!\left(a;b;c,c^{{\prime}};x,y\right).

Another function notation used is the “idem” function:

f(\chi _{1};\chi _{2},\dots,\chi _{n})+\mathop{\mathrm{idem}\/}\nolimits\!\left(\chi _{1};\chi _{2},\dots,\chi _{n}\right)=\sum _{{j=1}}^{n}f(\chi _{j};\chi _{1},\chi _{2},\dots,\chi _{{j-1}},\chi _{{j+1}},\dots,\chi _{n}).

These notations agree with Gasper and Rahman (2004) (except for the q-Appell functions which are not considered in this reference). A slightly different notation is that in Bailey (1935) and Slater (1966); see §17.4(i). Fine (1988) uses F(a,b;t:q) for a particular specialization of a \mathop{{{}_{{2}}\phi _{{1}}}\/}\nolimits function.