Digital Library of Mathematical Functions
About the Project
NIST
13 Confluent Hypergeometric FunctionsKummer Functions

§13.6 Relations to Other Functions

Contents

§13.6(i) Elementary Functions

§13.6(ii) Incomplete Gamma Functions

For the notation see §§6.2(i), 7.2(i), 8.2(i), and 8.19(i). When a-b is an integer or a is a positive integer the Kummer functions can be expressed as incomplete gamma functions (or generalized exponential integrals). For example,

13.6.5 M(a,a+1,-z)=-zM(1,a+1,z)=az-aγ(a,z),
13.6.6 U(a,a,z)=z1-aU(1,2-a,z)=z1-azEa(z)=zΓ(1-a,z).

Special cases are the error functions

13.6.7 M(12,32,-z2)=π2zerf(z),
13.6.8 U(12,12,z2)=πz2erfc(z).

§13.6(iii) Modified Bessel Functions

When b=2a the Kummer functions can be expressed as modified Bessel functions. For the notation see §§10.25(ii) and 9.2(i).

13.6.9 M(ν+12,2ν+1,2z) =Γ(1+ν)z(z/2)-νIν(z),
13.6.10 U(ν+12,2ν+1,2z) =1πz(2z)-νKν(z),
13.6.11 U(56,53,43z3/2) =π35/6exp(23z3/2)22/3zAi(z).

§13.6(iv) Parabolic Cylinder Functions

For the notation see §12.2.

13.6.12 U(12a+14,12,12z2)=212a+1414z2U(a,z),
13.6.13 U(12a+34,32,12z2)=212a+3414z2zU(a,z).
13.6.14 M(12a+14,12,12z2)=212a-34Γ(12a+34)14z2π(U(a,z)+U(a,-z)),
13.6.15 M(12a+34,32,12z2)=212a-54Γ(12a+14)14z2zπ(U(a,-z)-U(a,z)).

§13.6(v) Orthogonal Polynomials

Special cases of §13.6(iv) are as follows. For the notation see §§18.3, 18.19.

Hermite Polynomials

13.6.16 M(-n,12,z2) =(-1)nn!(2n)!H2n(z),
13.6.17 M(-n,32,z2) =(-1)nn!(2n+1)!2zH2n+1(z),
13.6.18 U(12-12n,32,z2) =2-nz-1Hn(z).

Laguerre Polynomials

Charlier Polynomials

§13.6(vi) Generalized Hypergeometric Functions

13.6.21 U(a,b,z)=z-aF02(a,a-b+1;-;-z-1).

For the definition of F02(a,a-b+1;-;-z-1) when neither a nor a-b+1 is a nonpositive integer see §16.5.