What's New
About the Project
NIST
Bibliography

Bibliography C

AB♦C♦DEFGHIJKLMNOPQRSTUVWXYZ
  • C. W. Clark (1979) Coulomb phase shift, American Journal of Physics 47 (8), pp. 683–684.
  • A. P. Clarke and W. Marwood (1984) A compact mathematical function package, Australian Computer Journal 16 (3), pp. 107–114.
  • F. Clarke (1989) The universal von Staudt theorems, Trans. Amer. Math. Soc. 315 (2), pp. 591–603.
  • P. A. Clarkson and E. L. Mansfield (2003) The second Painlevé equation, its hierarchy and associated special polynomials, Nonlinearity 16 (3), pp. R1–R26.
  • P. A. Clarkson and J. B. McLeod (1988) A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (2), pp. 97–138.
  • P. A. Clarkson (1991) Nonclassical Symmetry Reductions and Exact Solutions for Physically Significant Nonlinear Evolution Equations, in Nonlinear and Chaotic Phenomena in Plasmas, Solids and Fluids (Edmonton, AB, 1990), (J. A. Tuszynski Ed.), pp. 72–79.
  • P. A. Clarkson (2003a) The third Painlevé equation and associated special polynomials, J. Phys. A 36 (36), pp. 9507–9532.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials, J. Math. Phys. 44 (11), pp. 5350–5374.
  • P. A. Clarkson (2005) Special polynomials associated with rational solutions of the fifth Painlevé equation, J. Comput. Appl. Math. 178 (1-2), pp. 111–129.
  • P. A. Clarkson (2006) Painlevé Equations—Nonlinear Special Functions: Computation and Application, in Orthogonal Polynomials and Special Functions, (W. van Assche Ed.), Lecture Notes in Math., Vol. 1883, pp. 331–411.
  • T. Clausen (1828) Über die Fälle, wenn die Reihe von der Form y=1+α1βγx+αα+112ββ+1γγ+1x2+ etc. ein Quadrat von der Form z=1+α1βγδϵx+αα+112ββ+1γγ+1δδ+1ϵϵ+1x2+ etc. hat, J. Reine Angew. Math. 3, pp. 89–91.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation, Comm. ACM 12 (7), pp. 399–407.
  • W. W. Clendenin (1966) A method for numerical calculation of Fourier integrals, Numer. Math. 8 (5), pp. 422–436.
  • C. W. Clenshaw and A. R. Curtis (1960) A method for numerical integration on an automatic copmputer, Numer. Math. 2 (4), pp. 197–205.
  • C. W. Clenshaw, D. W. Lozier, F. W. J. Olver and P. R. Turner (1986) Generalized exponential and logarithmic functions, Comput. Math. Appl. Part B 12 (5-6), pp. 1091–1101.
  • C. W. Clenshaw, G. F. Miller and M. Woodger (1962) Algorithms for special functions. I, Numer. Math. 4, pp. 403–419.
  • C. W. Clenshaw, F. W. J. Olver and P. R. Turner (1989) Level-Index Arithmetic: An Introductory Survey, in Numerical Analysis and Parallel Processing (Lancaster, 1987), Lecture Notes in Math., Vol. 1397, pp. 95–168.
  • C. W. Clenshaw and F. W. J. Olver (1984) Beyond floating point, J. Assoc. Comput. Mach. 31 (2), pp. 319–328.
  • C. W. Clenshaw (1955) A note on the summation of Chebyshev series, Math. Tables Aids Comput. 9 (51), pp. 118–120.
  • C. W. Clenshaw (1957) The numerical solution of linear differential equations in Chebyshev series, Proc. Cambridge Philos. Soc. 53 (1), pp. 134–149.
  • C. W. Clenshaw (1962) Chebyshev Series for Mathematical Functions, National Physical Laboratory Mathematical Tables, Vol. 5. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals, The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • J. A. Cochran and J. N. Hoffspiegel (1970) Numerical techniques for finding ν-zeros of Hankel functions, Math. Comp. 24 (110), pp. 413–422.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions, IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • J. A. Cochran (1964) Remarks on the zeros of cross-product Bessel functions, J. Soc. Indust. Appl. Math. 12 (3), pp. 580–587.
  • J. A. Cochran (1965) The zeros of Hankel functions as functions of their order, Numer. Math. 7 (3), pp. 238–250.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros, Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • J. A. Cochran (1966b) The asymptotic nature of zeros of cross-product Bessel functions, Quart. J. Mech. Appl. Math. 19 (4), pp. 511–522.
  • W. J. Cody, K. E. Hillstrom and H. C. Thacher (1971) Chebyshev approximations for the Riemann zeta function, Math. Comp. 25 (115), pp. 537–547.
  • W. J. Cody and K. E. Hillstrom (1967) Chebyshev approximations for the natural logarithm of the gamma function, Math. Comp. 21 (98), pp. 198–203.
  • W. J. Cody and K. E. Hillstrom (1970) Chebyshev approximations for the Coulomb phase shift, Math. Comp. 24 (111), pp. 671–677.
  • W. J. Cody, K. A. Paciorek and H. C. Thacher (1970) Chebyshev approximations for Dawson’s integral, Math. Comp. 24 (109), pp. 171–178.
  • W. J. Cody, A. J. Strecok and H. C. Thacher (1973) Chebyshev approximations for the psi function, Math. Comp. 27 (121), pp. 123–127.
  • W. J. Cody and H. C. Thacher (1968) Rational Chebyshev approximations for the exponential integral E1(x), Math. Comp. 22 (103), pp. 641–649.
  • W. J. Cody and H. C. Thacher (1969) Chebyshev approximations for the exponential integral Ei(x), Math. Comp. 23 (106), pp. 289–303.
  • W. J. Cody and W. Waite (1980) Software Manual for the Elementary Functions, Prentice-Hall, Englewood Cliffs.
  • W. J. Cody (1965a) Chebyshev approximations for the complete elliptic integrals K and E, Math. Comp. 19 (89), pp. 105–112.
  • W. J. Cody (1965b) Chebyshev polynomial expansions of complete elliptic integrals, Math. Comp. 19 (90), pp. 249–259.
  • W. J. Cody (1968) Chebyshev approximations for the Fresnel integrals, Math. Comp. 22 (102), pp. 450–453.
  • W. J. Cody (1969) Rational Chebyshev approximations for the error function, Math. Comp. 23 (107), pp. 631–637.
  • W. J. Cody (1970) A survey of practical rational and polynomial approximation of functions, SIAM Rev. 12 (3), pp. 400–423.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind, ACM Trans. Math. Software 9 (2), pp. 242–245.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function, ACM Trans. Math. Software 17 (1), pp. 46–54.
  • W. J. Cody (1993a) Algorithm 714: CELEFUNT – A portable test package for complex elementary functions, ACM Trans. Math. Software 19 (1), pp. 1–21.
  • W. J. Cody (1993b) Algorithm 715: SPECFUN – A portable FORTRAN package of special function routines and test drivers, ACM Trans. Math. Software 19 (1), pp. 22–32.
  • M. W. Coffey (2008) On some series representations of the Hurwitz zeta function, J. Comput. Appl. Math. 216 (1), pp. 297–305.
  • M. W. Coffey (2009) An efficient algorithm for the Hurwitz zeta and related functions, J. Comput. Appl. Math. 225 (2), pp. 338–346.
  • H. Cohen (1993) A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin-New York.
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for |z|>1 using modified Bessel functions, Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions, SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function Jn(z) in the complex plane, Math. Comp. 40 (161), pp. 343–366.
  • J. P. Coleman (1980) A Fortran subroutine for the Bessel function Jn(x) of order 0 to 10, Comput. Phys. Comm. 21 (1), pp. 109–118.
  • J. P. Coleman (1987) Polynomial approximations in the complex plane, J. Comput. Appl. Math. 18 (2), pp. 193–211.
  • L. Collatz (1960) The Numerical Treatment of Differential Equations, 3rd edition, Die Grundlehren der Mathematischen Wissenschaften, Vol. 60, Springer, Berlin.
  • M. Colman, A. Cuyt and J. Van Deun (2011) Validated computation of certain hypergeometric functions, ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • Combinatorial Object Server (Web Site) Department of Computer Science, University of Victoria, Canada..
  • L. Comtet (1974) Advanced Combinatorics: The Art of Finite and Infinite Expansions, enlarged edition, D. Reidel Publishing Co., Dordrecht.
  • S. Conde and S. L. Kalla (1979) The ν-zeros of J-ν(x), Math. Comp. 33 (145), pp. 423–426.
  • S. Conde and S. L. Kalla (1981) On zeros of the hypergeometric function, Serdica 7 (3), pp. 243–249.
  • E. U. Condon and G. H. Shortley (1935) The Theory of Atomic Spectra, Cambridge University Press, Cambridge.
  • W. C. Connett, C. Markett and A. L. Schwartz (1993) Product formulas and convolutions for angular and radial spheroidal wave functions, Trans. Amer. Math. Soc. 338 (2), pp. 695–710.
  • J. N. L. Connor, P. R. Curtis and D. Farrelly (1983) A differential equation method for the numerical evaluation of the Airy, Pearcey and swallowtail canonical integrals and their derivatives, Molecular Phys. 48 (6), pp. 1305–1330.
  • J. N. L. Connor and P. R. Curtis (1982) A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: Application to Pearcey’s integral and its derivatives, J. Phys. A 15 (4), pp. 1179–1190.
  • J. N. L. Connor and D. Farrelly (1981) Molecular collisions and cusp catastrophes: Three methods for the calculation of Pearcey’s integral and its derivatives, Chem. Phys. Lett. 81 (2), pp. 306–310.
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering, Molecular Physics 37 (6), pp. 1703–1712.
  • J. N. L. Connor (1973) Evaluation of multidimensional canonical integrals in semiclassical collision theory, Molecular Phys. 26 (6), pp. 1371–1377.
  • J. N. L. Connor (1974) Semiclassical theory of molecular collisions: Many nearly coincident classical trajectories, Molecular Phys. 27 (4), pp. 853–866.
  • J. N. L. Connor (1976) Catastrophes and molecular collisions, Molecular Phys. 31 (1), pp. 33–55.
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis, Ann. Math. Statist. 34 (4), pp. 1270–1285.
  • E. D. Constantinides and R. J. Marhefka (1993) Efficient and accurate computation of the incomplete Airy functions, Radio Science 28 (4), pp. 441–457.
  • J. W. Cooley and J. W. Tukey (1965) An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (90), pp. 297–301.
  • R. Cools (2003) An encyclopaedia of cubature formulas, J. Complexity 19 (3), pp. 445–453.
  • F. Cooper, A. Khare and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations, Complexity 11 (6), pp. 30–34.
  • M. D. Cooper, R. H. Jeppesen and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions, Phys. Rev. C 20 (2), pp. 696–704.
  • R. B. Cooper (1981) Introduction to Queueing Theory, 2nd edition, North-Holland Publishing Co., New York.
  • E. T. Copson (1933) An approximation connected with e-x, Proc. Edinburgh Math. Soc. (2) 3, pp. 201–206.
  • E. T. Copson (1935) An Introduction to the Theory of Functions of a Complex Variable, Oxford University Press, Oxford.
  • E. T. Copson (1963) On the asymptotic expansion of Airy’s integral, Proc. Glasgow Math. Assoc. 6, pp. 113–115.
  • E. T. Copson (1965) Asymptotic Expansions, Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, New York.
  • R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth (1996) On the Lambert W function, Adv. Comput. Math. 5 (4), pp. 329–359.
  • R. M. Corless, D. J. Jeffrey and H. Rasmussen (1992) Numerical evaluation of Airy functions with complex arguments, J. Comput. Phys. 99 (1), pp. 106–114.
  • G. Cornell, J. H. Silverman and G. Stevens (Eds.) (1997) Modular Forms and Fermat’s Last Theorem, Springer-Verlag, New York.
  • H. Cornille and A. Martin (1972) Constraints on the phase of scattering amplitudes due to positivity, Nuclear Phys. B 49, pp. 413–440.
  • H. Cornille and A. Martin (1974) Constraints on the phases of helicity amplitudes due to positivity, Nuclear Phys. B 77, pp. 141–162.
  • P. Cornille (1972) Computation of Hankel transforms, SIAM Rev. 14 (2), pp. 278–285.
  • M. S. Corrington (1961) Applications of the complex exponential integral, Math. Comp. 15 (73), pp. 1–6.
  • C. M. Cosgrove (2006) Chazy’s second-degree Painlevé equations, J. Phys. A 39 (39), pp. 11955–11971.
  • O. Costin (1999) Correlation between pole location and asymptotic behavior for Painlevé I solutions, Comm. Pure Appl. Math. 52 (4), pp. 461–478.
  • CoStLy (free C-XSC library)
  • D. A. Cox (1984) The arithmetic-geometric mean of Gauss, Enseign. Math. (2) 30 (3-4), pp. 275–330.
  • D. A. Cox (1985) Gauss and the arithmetic-geometric mean, Notices Amer. Math. Soc. 32 (2), pp. 147–151.
  • R. E. Crandall (1996) Topics in Advanced Scientific Computation, TELOS/Springer-Verlag, New York.
  • R. Crandall and C. Pomerance (2005) Prime Numbers: A Computational Perspective, 2nd edition, Springer-Verlag, New York.
  • J. E. Cremona (1997) Algorithms for Modular Elliptic Curves, 2nd edition, Cambridge University Press, Cambridge.
  • J. Crisóstomo, S. Lepe and J. Saavedra (2004) Quasinormal modes of the extremal BTZ black hole, Classical Quantum Gravity 21 (12), pp. 2801–2809.
  • D. C. Cronemeyer (1991) Demagnetization factors for general ellipsoids, J. Appl. Phys. 70 (6), pp. 2911–2914.
  • B. Crstici and Gh. Tudor (1975) Compléments au traité de D. S. Mitrinović. VII. Sur une inégalité de D. S. Mitrinović, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (498-541), pp. 153–154.
  • A. Cruz, J. Esparza and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet, J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • A. Cruz and J. Sesma (1982) Zeros of the Hankel function of real order and of its derivative, Math. Comp. 39 (160), pp. 639–645.
  • A. Csótó and G. M. Hale (1997) S-matrix and R-matrix determination of the low-energy He5 and Li5 resonance parameters, Phys. Rev. C 55 (1), pp. 536–539.
  • Cunningham Project (Web Site)
  • S. W. Cunningham (1969) Algorithm AS 24: From normal integral to deviate, Appl. Statist. 18 (3), pp. 290–293.
  • A. R. Curtis (1964a) Coulomb Wave Functions, Roy. Soc. Math. Tables, Vol. 11, Cambridge University Press, Cambridge.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period, National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland and W. B. Jones (2008) Handbook of Continued Fractions for Special Functions, Springer, New York.
  • D. Cvijović and J. Klinowski (1994) On the integration of incomplete elliptic integrals, Proc. Roy. Soc. London Ser. A 444, pp. 525–532.
  • D. Cvijović and J. Klinowski (1999) Integrals involving complete elliptic integrals, J. Comput. Appl. Math. 106 (1), pp. 169–175.