25.8 Sums25.10 Zeros

§25.9 Asymptotic Approximations

If x\geq 1, y\geq 1, 2\pi xy=t, and 0\leq\sigma\leq 1, then as t\to\infty with \sigma fixed,

25.9.1\mathop{\zeta\/}\nolimits\!\left(\sigma+it\right)=\sum _{{1\leq n\leq x}}\frac{1}{n^{s}}+\chi(s)\sum _{{1\leq n\leq y}}\frac{1}{n^{{1-s}}}+\mathop{O\/}\nolimits\!\left(x^{{-\sigma}}\right)+\mathop{O\/}\nolimits\!\left(y^{{\sigma-1}}t^{{\frac{1}{2}-\sigma}}\right),

where s=\sigma+it and

25.9.2\chi(s)=\pi^{{s-\frac{1}{2}}}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}-\tfrac{1}{2}s\right)/\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}s\right).

If \sigma=\frac{1}{2}, x=y=\sqrt{t/(2\pi)}, and m=\left\lfloor x\right\rfloor, then (25.9.1) becomes

25.9.3\mathop{\zeta\/}\nolimits\!\left(\tfrac{1}{2}+it\right)=\sum _{{n=1}}^{m}\frac{1}{n^{{\frac{1}{2}+it}}}+\chi\left(\tfrac{1}{2}+it\right)\sum _{{n=1}}^{m}\frac{1}{n^{{\frac{1}{2}-it}}}+\mathop{O\/}\nolimits\!\left(t^{{-1/4}}\right).

For other asymptotic approximations see Berry and Keating (1992), Paris and Cang (1997); see also Paris and Kaminski (2001, pp. 380–389).