-
H. Maass (1971)
Siegel’s modular forms and Dirichlet series,
Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin.
-
D. A. MacDonald (1989)
The roots of 
,
Quart. Appl. Math. 47 (2), pp. 375–378.
-
D. A. MacDonald (1997)
On the computation of zeroes of 
,
Quart. Appl. Math. 55 (4), pp. 623–633.
-
I. G. Macdonald (1972)
Affine root systems and Dedekind’s
-function,
Invent. Math. 15 (2), pp. 91–143.
-
I. G. Macdonald (1982)
Some conjectures for root systems,
SIAM J. Math. Anal. 13 (6), pp. 988–1007.
-
I. G. Macdonald (1990)
Hypergeometric Functions,
-
I. G. Macdonald (1995)
Symmetric Functions and Hall Polynomials,
2nd edition, The Clarendon Press, Oxford University Press, New York-Oxford.
-
I. G. Macdonald (1998)
Symmetric Functions and Orthogonal Polynomials,
University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
-
I. G. Macdonald (2000)
Orthogonal polynomials associated with root systems,
Sém. Lothar. Combin. 45, pp. Art. B45a, 40 pp. (electronic).
-
I. G. Macdonald (2003)
Affine Hecke Algebras and Orthogonal Polynomials,
Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge.
-
I. D. Macdonald (1968)
The Theory of Groups,
Clarendon Press, Oxford.
-
R. L. Mace and M. A. Hellberg (1995)
A dispersion function for plasmas containing superthermal particles,
Physics of Plasmas 2 (6), pp. 2098–2109.
-
N. W. Macfadyen and P. Winternitz (1971)
Crossing symmetric expansions of physical scattering amplitudes: The
group and Lamé functions,
J. Mathematical Phys. 12, pp. 281–293.
-
A. J. MacLeod (1989)
Algorithm AS 245. A robust and reliable algorithm for the logarithm of the gamma function,
Appl. Statist. 38 (2), pp. 397–402.
-
A. J. MacLeod (1993)
Chebyshev expansions for modified Struve and related functions,
Math. Comp. 60 (202), pp. 735–747.
-
A. J. MacLeod (1994)
Computation of inhomogeneous Airy functions,
J. Comput. Appl. Math. 53 (1), pp. 109–116.
-
A. J. MacLeod (1996a)
Algorithm 757: MISCFUN, a software package to compute uncommon special functions,
ACM Trans. Math. Software 22 (3), pp. 288–301.
-
A. J. MacLeod (1996b)
Rational approximations, software and test methods for sine and cosine integrals,
Numer. Algorithms 12 (3-4), pp. 259–272.
-
A. J. MacLeod (1998)
ACM Trans. Math. Software 24 (1), pp. 1–12.
-
A. J. MacLeod (2002a)
Asymptotic expansions for the zeros of certain special functions,
J. Comput. Appl. Math. 145 (2), pp. 261–267.
-
A. J. MacLeod (2002b)
The efficient computation of some generalised exponential integrals,
J. Comput. Appl. Math. 148 (2), pp. 363–374.
-
T. M. MacRobert (1967)
Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications,
3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
-
Magma (Web Site)
-
A. P. Magnus (1995)
Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials,
J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
-
W. Magnus, F. Oberhettinger and R. P. Soni (1966)
Formulas and Theorems for the Special Functions of Mathematical Physics,
3rd edition, Springer-Verlag, New York-Berlin.
-
W. Magnus and S. Winkler (1966)
Hill’s Equation,
Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
-
W. Magnus (1941)
Zur Theorie des zylindrisch-parabolischen Spiegels,
Z. Physik 118, pp. 343–356 (German).
-
K. Mahler (1930)
Über die Nullstellen der unvollständigen Gammafunktionen,
Rend. del Circ. Matem. Palermo 54, pp. 1–41.
-
R. S. Maier (2005)
On reducing the Heun equation to the hypergeometric equation,
J. Differential Equations 213 (1), pp. 171–203.
-
R. S. Maier (2007)
The 192 solutions of the Heun equation,
Math. Comp. 76 (258), pp. 811–843.
-
H. Majima, K. Matsumoto and N. Takayama (2000)
Quadratic relations for confluent hypergeometric functions,
Tohoku Math. J. (2) 52 (4), pp. 489–513.
-
K. L. Majumder and G. P. Bhattacharjee (1973)
Algorithm AS 63. The incomplete beta integral,
Appl. Statist. 22 (3), pp. 409–411.
-
S. Makinouchi (1966)
Zeros of Bessel functions
and
accurate to twenty-nine significant digits,
Technology Reports of the Osaka University 16 (685), pp. 1–44.
-
Yu. I. Manin (1998)
Sixth Painlevé Equation, Universal Elliptic Curve, and Mirror of 
,
in Geometry of Differential Equations,
(A. Varchenko and V. Vassiliev Eds.), Amer. Math. Soc. Transl. Ser. 2, Vol. 186, pp. 131–151.
-
E. L. Mansfield and H. N. Webster (1998)
On one-parameter families of Painlevé III,
Stud. Appl. Math. 101 (3), pp. 321–341.
-
Maple (commercial interactive system)
-
F. Marcellán, M. Alfaro and M. L. Rezola (1993)
Orthogonal polynomials on Sobolev spaces: Old and new directions,
J. Comput. Appl. Math. 48 (1-2), pp. 113–131.
-
M. Marden (1966)
Geometry of Polynomials,
2nd edition, American Mathematical Society, Providence, RI.
-
O. I. Marichev (1983)
Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables,
Ellis Horwood Ltd./John Wiley & Sons, Inc, Chichester/New York.
-
O. I. Marichev (1984)
On the Representation of Meijer’s
-Function in the Vicinity of Singular Unity,
in Complex Analysis and Applications ’81 (Varna, 1981),
pp. 383–398.
-
B. Markman (1965)
Contribution no. 14. The Riemann zeta function,
BIT 5, pp. 138–141.
-
S. M. Markov (1981)
On the interval computation of elementary functions,
C. R. Acad. Bulgare Sci. 34 (3), pp. 319–322.
-
A. I. Markushevich (1983)
The Theory of Analytic Functions: A Brief Course,
“Mir”, Moscow.
-
A. I. Markushevich (1985)
Theory of Functions of a Complex Variable. Vols. I, II, III,
Chelsea Publishing Co., New York (English).
-
A. I. Markushevich (1992)
Introduction to the Classical Theory of Abelian Functions,
American Mathematical Society, Providence, RI.
-
P. Maroni (1995)
An integral representation for the Bessel form,
J. Comput. Appl. Math. 57 (1-2), pp. 251–260.
-
J. E. Marsden and A. J. Tromba (1996)
Vector Calculus,
4th edition, W. H. Freeman & Company, New York.
-
P. L. Marston (1992)
Geometrical and Catastrophe Optics Methods in Scattering,
in Physical Acoustics,
(R. N. Thurston Ed.), Vol. 21, pp. 1–234.
-
P. L. Marston (1999)
Catastrophe optics of spheroidal drops and generalized rainbows,
J. Quantit. Spec. and Rad. Trans. 63, pp. 341–351.
-
J. Martinek, H. P. Thielman and E. C. Huebschman (1966)
On the zeros of cross-product Bessel functions,
J. Math. Mech. 16, pp. 447–452.
-
B. Martić (1978)
Note sur certaines inégalités d’intégrales,
Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat.
Nauka 61 (17), pp. 165–168 (French, Serbo-Croatian summary).
-
P. Martín, R. Pérez and A. L. Guerrero (1992)
Two-point quasi-fractional approximations to the Airy function 
,
J. Comput. Phys. 99 (2), pp. 337–340.
-
J. C. Mason and D. C. Handscomb (2003)
Chebyshev Polynomials,
Chapman & Hall/CRC, Boca Raton, FL.
-
D. R. Masson (1991)
Associated Wilson polynomials,
Constr. Approx. 7 (4), pp. 521–534.
-
T. Masuda, Y. Ohta and K. Kajiwara (2002)
A determinant formula for a class of rational solutions of Painlevé V equation,
Nagoya Math. J. 168, pp. 1–25.
-
T. Masuda (2003)
On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade,
Funkcial. Ekvac. 46 (1), pp. 121–171.
-
T. Masuda (2004)
Classical transcendental solutions of the Painlevé equations and their degeneration,
Tohoku Math. J. (2) 56 (4), pp. 467–490.
-
A. M. Mathai (1993)
A Handbook of Generalized Special Functions for Statistical and Physical Sciences,
Oxford Science Publications, The Clarendon Press Oxford University Press, New York.
-
Mathematica (commercial interactive system)
-
Matlab (commercial interactive system)
-
F. Matta and A. Reichel (1971)
Uniform computation of the error function and other related functions,
Math. Comp. 25 (114), pp. 339–344.
-
D. W. Matula and P. Kornerup (1980)
Foundations of Finite Precision Rational Arithmetic,
(R. D. Grigorieff Ed.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
-
G. Matviyenko (1993)
On the evaluation of Bessel functions,
Appl. Comput. Harmon. Anal. 1 (1), pp. 116–135.
-
Maxima (free interactive system)
-
L. C. Maximon (1955)
On the evaluation of indefinite integrals involving the special functions: Application of method,
Quart. Appl. Math. 13, pp. 84–93.
-
L. C. Maximon (1991)
On the evaluation of the integral over the product of two spherical Bessel functions,
J. Math. Phys. 32 (3), pp. 642–648.
-
L. C. Maximon (2003)
The dilogarithm function for complex argument,
Proc. Roy. Soc. London Ser. A 459, pp. 2807–2819.
-
M. Mazzocco (2001a)
Rational solutions of the Painlevé VI equation,
J. Phys. A 34 (11), pp. 2281–2294.
-
M. Mazzocco (2001b)
Picard and Chazy solutions to the Painlevé VI equation,
Math. Ann. 321 (1), pp. 157–195.
-
R. C. McCann (1977)
Inequalities for the zeros of Bessel functions,
SIAM J. Math. Anal. 8 (1), pp. 166–170.
-
J. P. McClure and R. Wong (1978)
Explicit error terms for asymptotic expansions of Stieltjes transforms,
J. Inst. Math. Appl. 22 (2), pp. 129–145.
-
J. P. McClure and R. Wong (1979)
Exact remainders for asymptotic expansions of fractional integrals,
J. Inst. Math. Appl. 24 (2), pp. 139–147.
-
J. P. McClure and R. Wong (1987)
Asymptotic expansion of a multiple integral,
SIAM J. Math. Anal. 18 (6), pp. 1630–1637.
-
B. M. McCoy, C. A. Tracy and T. T. Wu (1977)
Painlevé functions of the third kind,
J. Mathematical Phys. 18 (5), pp. 1058–1092.
-
B. M. McCoy (1992)
Spin Systems, Statistical Mechanics and Painlevé Functions,
in Painlevé Transcendents: Their Asymptotics and Physical Applications,
(P. Winternitz Ed.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 377–391.
-
F. A. McDonald and J. Nuttall (1969)
Complex-energy method for elastic
-H scattering above the ionization threshold,
Phys. Rev. Lett. 23 (7), pp. 361–363.
-
J. N. McDonald and N. A. Weiss (1999)
A Course in Real Analysis,
Academic Press Inc., San Diego, CA.
-
H. R. McFarland and D. St. P. Richards (2001)
Exact misclassification probabilities for plug-in normal quadratic discriminant functions. I. The equal-means case,
J. Multivariate Anal. 77 (1), pp. 21–53.
-
H. R. McFarland and D. St. P. Richards (2002)
Exact misclassification probabilities for plug-in normal quadratic discriminant functions. II. The heterogeneous case,
J. Multivariate Anal. 82 (2), pp. 299–330.
-
H. McKean and V. Moll (1999)
Elliptic Curves,
Cambridge University Press, Cambridge.
-
N. M. McLachlan and A. L. Meyers (1936)
The ster and stei functions,
Phil. Mag. Series 7 21 (140), pp. 425–436.
-
N. W. McLachlan (1934)
Loud Speakers: Theory, Performance, Testing and Design,
Oxford University Press, New York.
-
N. W. McLachlan (1947)
Theory and Application of Mathieu Functions,
Clarendon Press, Oxford.
-
N. W. McLachlan (1961)
Bessel Functions for Engineers,
2nd edition, Clarendon Press, Oxford.
-
J. McMahon (1894)
On the roots of the Bessel and certain related functions,
Ann. of Math. 9 (1-6), pp. 23–30.
-
J. M. McNamee (2007)
Numerical Methods for Roots of Polynomials. Part I,
Studies in Computational Mathematics, Vol. 14, Elsevier, Amsterdam.
-
Fr. Mechel (1966)
Calculation of the modified Bessel functions of the second kind with complex argument,
Math. Comp. 20 (95), pp. 407–412.
-
V. Meden and K. Schönhammer (1992)
Spectral functions for the Tomonaga-Luttinger model,
Phys. Rev. B 46 (24), pp. 15753–15760.
-
D. S. Meek and D. J. Walton (1992)
Clothoid spline transition spirals,
Math. Comp. 59 (199), pp. 117–133.
-
R. Mehrem, J. T. Londergan and M. H. Macfarlane (1991)
Analytic expressions for integrals of products of spherical Bessel functions,
J. Phys. A 24 (7), pp. 1435–1453.
-
M. L. Mehta (2004)
Random Matrices,
3rd edition, Pure and Applied Mathematics (Amsterdam), Vol. 142, Elsevier/Academic Press, Amsterdam.
-
C. S. Meijer (1946)
On the
-function. VII, VIII,
Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
-
J. W. Meijer and N. H. G. Baken (1987)
The exponential integral distribution,
Statist. Probab. Lett. 5 (3), pp. 209–211.
-
G. Meinardus (1967)
Approximation of Functions: Theory and Numerical Methods,
Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag, New York.
-
P. N. Meisinger, T. R. Miller and M. C. Ogilvie (2002)
Phenomenological equations of state for the quark-gluon plasma,
Phys. Rev. D 65 (3), pp. (034009–1)–(034009–10).
-
J. Meixner, F. W. Schäfke and G. Wolf (1980)
Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations: Further Studies,
Lecture Notes in Mathematics, Vol. 837, Springer-Verlag, Berlin-New York.