Notations SNotations U
Notations T
*ABCDEFGHIJKLMNOPQRS♦T♦UVWXYZ
T_{n}
tangent numbers; §24.15(ii)
\mathop{T_{{n}}\/}\nolimits\!\left(x\right)
Chebyshev polynomial of the first kind; Table 18.3.1
\mathop{T^{{*}}_{{n}}\/}\nolimits\!\left(x\right)
shifted Chebyshev polynomial of the first kind; Table 18.3.1
\mathop{\tan\/}\nolimits z
tangent function; (4.14.4)
\mathop{\tanh\/}\nolimits z
hyperbolic tangent function; (4.28.4)
\mathop{\tau\/}\nolimits\!\left(n\right)
Ramanujan’s tau function; (27.14.18)
\mathop{\theta\/}\nolimits\!\left(z\right)
Airy phase function; §9.8(i)
\mathop{\vartheta\/}\nolimits\!\left(x\right)=\mathop{\theta _{{3}}\/}\nolimits\!\left(0,x\right)
alternative notation; (27.13.4)
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z,q\right): theta function)
\mathop{\theta _{{\nu}}\/}\nolimits\!\left(x\right)
phase of Bessel functions; (10.18.3)
\mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right)
theta function; §20.2(i)
\mathop{\theta _{{j}}\/}\nolimits\!\left(z,q\right)
theta function; §20.2(i)
\Theta(\boldsymbol{{\phi}}|\mathbf{B})=\mathop{\theta\/}\nolimits\!\left(\boldsymbol{{\phi}}/(2\pi i)\middle|\mathbf{B}/(2\pi i)\right)
notation used by Belokolos et al. (1994), Dubrovin (1981); §21.1
(with \mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right): Riemann theta function)
\Theta(z|\tau)=\mathop{\theta _{{4}}\/}\nolimits\!\left(u\middle|\tau\right)
Jacobi’s notation; §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)
Riemann theta function; (21.2.1)
\Theta _{1}(z|\tau)=\mathop{\theta _{{3}}\/}\nolimits\!\left(u\middle|\tau\right)
Jacobi’s notation; §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\vartheta _{j}(z|\tau)=\mathop{\theta _{{j}}\/}\nolimits\!\left(\pi z\middle|\tau\right)
notation used by McKean and Moll (1999, p. 125); §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\theta _{c}(z|\tau)=\ifrac{\mathop{\theta _{{2}}\/}\nolimits\!\left(u\middle|\tau\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(0\middle|\tau\right)}
notation used by Neville (1951); §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\theta _{d}(z|\tau)=\ifrac{\mathop{\theta _{{3}}\/}\nolimits\!\left(u\middle|\tau\right)}{\mathop{\theta _{{3}}\/}\nolimits\!\left(0\middle|\tau\right)}
notation used by Neville (1951); §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\theta _{n}(z|\tau)=\ifrac{\mathop{\theta _{{4}}\/}\nolimits\!\left(u\middle|\tau\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(0\middle|\tau\right)}
notation used by Neville (1951); §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\theta _{s}(z|\tau)=\pi{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right)\ifrac{\mathop{\theta _{{1}}\/}\nolimits\!\left(u\middle|\tau\right)}{{\mathop{\theta _{{1}}\/}\nolimits^{{\prime}}}\!\left(0\middle|\tau\right)}
notation used by Neville (1951); §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\mathop{{\theta _{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)
phase of Coulomb functions; (33.2.9)
\mathop{\hat{\theta}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)
scaled Riemann theta function; (21.2.2)
\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)
Riemann theta function with characteristics; (21.2.5)
\trace\mathbf{A}
trace of matrix \mathbf{A}; Common Notations and Definitions