Notations PNotations R
Notations Q
*ABCDEFGHIJKLMNOP♦Q♦RSTUVWXYZ
\Rational
set of all rational numbers; Common Notations and Definitions
Q(z)=\tfrac{1}{2}\mathop{\mathrm{erfc}\/}\nolimits\!\left(z/\sqrt{2}\right)
alternative notation for the complementary error function; §7.1
(with \mathop{\mathrm{erfc}\/}\nolimits z: complementary error function)
Q_{z}(a)=\mathop{\Gamma\/}\nolimits\!\left(a,z\right)
notation used by Batchelder (1967, p. 63); §8.1
(with \mathop{\Gamma\/}\nolimits\!\left(a,z\right): incomplete gamma function)
\mathop{\mathsf{Q}_{{\nu}}\/}\nolimits\!\left(x\right): \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) with \mu=0
; §14.3(i)
\mathop{\mathsf{Q}_{{\nu}}\/}\nolimits\!\left(x\right): \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) with \mu=0
; §14.1
\mathop{Q_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,N\right)
Hahn polynomial; Table 18.19.1
\mathop{Q_{{\nu}}\/}\nolimits\!\left(z\right): \mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right) with \mu=0
; §14.21(i)
\mathop{Q_{{\nu}}\/}\nolimits\!\left(z\right): \mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right) with \mu=0
; §14.3(ii)
\mathop{Q_{{\nu}}\/}\nolimits\!\left(z\right): \mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right) with \mu=0
; §14.1
\mathrm{Q}_{\nu}^{\mu}(x)=\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)
notation used by Erdélyi et al. (1953a), Olver (1997b); §14.1
(with \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right): Ferrers function of the second kind)
\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)
Ferrers function of the second kind; (14.3.2)
\mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
associated Legendre function of the second kind; (14.3.7)
\mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
associated Legendre function of the second kind; §14.21(i)
Q_{{\nu}}^{{\mu}}(x)=\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)
notation used by Magnus et al. (1966); §14.1
(with \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right): Ferrers function of the second kind)
\mathfrak{Q}_{{\nu}}^{{\mu}}(z)=\mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
notation used by Magnus et al. (1966); §14.1
(with \mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right): associated Legendre function of the second kind)
\mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
Olver’s associated Legendre function; §14.21(i)
\mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(z\right)
Olver’s associated Legendre function; (14.3.10)
\mathop{\widehat{\mathsf{Q}}^{{-\mu}}_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right)
conical function; (14.20.2)
\mathop{Q\/}\nolimits\!\left(a,z\right)
normalized incomplete gamma function; (8.2.4)
Q_{\ell}(\epsilon,r)=-(2\ell+1)!\mathop{h\/}\nolimits\!\left(\epsilon,\ell;r\right)/(2^{{\ell+1}}A(\epsilon,\ell))
notation used by Curtis (1964a); §33.1
(with \mathop{h\/}\nolimits\!\left(\epsilon,\ell;r\right): irregular Coulomb function and !: n!: factorial)
\mathop{Q_{{n}}\/}\nolimits\!\left(x;a,b\,|\, q\right)
Al-Salam–Chihara polynomial; (18.28.7)
\mathop{Q_{{n}}\/}\nolimits\!\left(x;a,b\,|\, q^{{-1}}\right)
q^{{-1}}-Al-Salam–Chihara polynomial; (18.28.9)
\mathop{Q_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,N;q\right)
q-Hahn polynomial; (18.27.3)
\mathop{\mathit{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right)
spheroidal wave function of complex argument; §30.6
\mathrm{Qs}^{{m}}_{{n}}(z,\gamma^{2})=\mathop{\mathit{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right)
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of complex argument; §30.1
(with \mathop{\mathit{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right): spheroidal wave function of complex argument)
\mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)
spheroidal wave function of the second kind; §30.5
\mathrm{qs}^{{m}}_{{n}}(x,\gamma^{2})=\mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of the second kind; §30.1
(with \mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right): spheroidal wave function of the second kind)