§19.6 Special Cases
Contents
§19.6(i) Complete Elliptic Integrals
- Notes:
- For the first line of (19.6.2) put
in the first
line of (19.25.2) and use the last line of
(19.25.1). For the second line of (19.6.2), and
also for (19.6.5), use (19.7.8) and
(19.6.15). For the first line of (19.6.6) use
(19.6.5) and (19.6.2). For more detail as
see §19.12. - Referenced by:
- Figure 19.3.5, Figure 19.3.5
- Permalink:
- http://dlmf.nist.gov/19.6.i
19.6.1
- Symbols:
-
: Legendre’s complementary complete elliptic integral of the first kind,
: Legendre’s complementary complete elliptic integral of the second kind,
: Legendre’s complete elliptic integral of the first kind and
: Legendre’s complete elliptic integral of the second kind
- Permalink:
- http://dlmf.nist.gov/19.6.E1
- Encodings:
- TeX, TeX, TeX, pMML, pMML, pMML, png, png, png
19.6.2

,

.
- Symbols:
-
: Legendre’s complete elliptic integral of the first kind,
: Legendre’s complete elliptic integral of the second kind,
: Legendre’s complete elliptic integral of the third kind,
: real or complex modulus and
: complementary modulus
- Referenced by:
- §19.6(i)
- Permalink:
- http://dlmf.nist.gov/19.6.E2
- Encodings:
- TeX, TeX, pMML, pMML, png, png
19.6.3
.
19.6.4

,

.
- Symbols:
-
: Legendre’s complete elliptic integral of the third kind,
: sign of
,
: real or complex modulus and
: real or complex parameter
- Permalink:
- http://dlmf.nist.gov/19.6.E4
- Encodings:
- TeX, TeX, pMML, pMML, png, png
If
, then the Cauchy principal value satisfies
19.6.5
- Symbols:
-
: Legendre’s complete elliptic integral of the first kind,
: Legendre’s complete elliptic integral of the third kind,
: real or complex modulus and
: real or complex parameter
- Referenced by:
- §19.12, Figure 19.3.6, Figure 19.3.6, §19.6(i), §19.7(iii), §19.8(i)
- Permalink:
- http://dlmf.nist.gov/19.6.E5
- Encodings:
- TeX, pMML, png
and
19.6.6

,

.
- Symbols:
-
: Legendre’s complete elliptic integral of the first kind,
: Legendre’s complete elliptic integral of the second kind,
: Legendre’s complete elliptic integral of the third kind,
: real or complex modulus,
: complementary modulus and
: real or complex parameter
- Referenced by:
- Figure 19.3.6, Figure 19.3.6, §19.6(i)
- Permalink:
- http://dlmf.nist.gov/19.6.E6
- Encodings:
- TeX, TeX, TeX, pMML, pMML, pMML, png, png, png
§19.6(ii)
- Notes:
- Use (19.2.4), (19.16.6), and (19.25.5).
- Keywords:
-
Legendre’s elliptic integrals,
-function, inverse Gudermannian function
- Permalink:
- http://dlmf.nist.gov/19.6.ii
19.6.7
- Symbols:
-
: Legendre’s complete elliptic integral of the first kind,
: Legendre’s incomplete elliptic integral of the first kind,
: real or complex argument and
: real or complex modulus
- Permalink:
- http://dlmf.nist.gov/19.6.E7
- Encodings:
- TeX, TeX, TeX, TeX, TeX, pMML, pMML, pMML, pMML, pMML, png, png, png, png, png
19.6.8
- Symbols:
-
: Carlson’s combination of inverse circular and inverse hyperbolic functions,
: cosine function,
: Legendre’s incomplete elliptic integral of the first kind,
: inverse Gudermannian function,
: sine function and
: real or complex argument
- Referenced by:
- §19.10(ii), §19.10(ii)
- Permalink:
- http://dlmf.nist.gov/19.6.E8
- Encodings:
- TeX, pMML, png
For the inverse Gudermannian function
see
§4.23(viii). Compare also (19.10.2).
§19.6(iii)
19.6.9
- Symbols:
-
: Legendre’s complete elliptic integral of the second kind,
: Legendre’s incomplete elliptic integral of the second kind,
: sine function,
: real or complex argument and
: real or complex modulus
- Permalink:
- http://dlmf.nist.gov/19.6.E9
- Encodings:
- TeX, TeX, TeX, TeX, TeX, pMML, pMML, pMML, pMML, pMML, png, png, png, png, png
19.6.10
- Symbols:
-
: Legendre’s incomplete elliptic integral of the second kind,
: real or complex argument and
: real or complex modulus
- Permalink:
- http://dlmf.nist.gov/19.6.E10
- Encodings:
- TeX, pMML, png
§19.6(iv)
Circular and hyperbolic cases, including Cauchy principal values, are unified
by using
. Let
and
. Then
19.6.11
- Symbols:
-
: Legendre’s incomplete elliptic integral of the third kind,
: tangent function,
: real or complex argument,
: real or complex modulus and
: real or complex parameter
- Permalink:
- http://dlmf.nist.gov/19.6.E11
- Encodings:
- TeX, TeX, TeX, pMML, pMML, pMML, png, png, png
19.6.12
- Symbols:
-
: Carlson’s combination of inverse circular and inverse hyperbolic functions,
: Legendre’s incomplete elliptic integral of the third kind,
: real or complex argument and
: real or complex parameter
- Referenced by:
- §19.6(iv), §19.9(i), §19.9(ii)
- Permalink:
- http://dlmf.nist.gov/19.6.E12
- Encodings:
- TeX, TeX, TeX, pMML, pMML, pMML, png, png, png
19.6.13
- Symbols:
-
: cosine function,
: Legendre’s incomplete elliptic integral of the first kind,
: Legendre’s incomplete elliptic integral of the second kind,
: Legendre’s incomplete elliptic integral of the third kind,
: sine function,
: tangent function,
: real or complex argument,
: real or complex modulus,
: complementary modulus and
- Referenced by:
- ¶ ‣ §19.36(ii), §19.6(iv)
- Permalink:
- http://dlmf.nist.gov/19.6.E13
- Encodings:
- TeX, TeX, TeX, pMML, pMML, pMML, png, png, png
19.6.14
For the Cauchy principal value of
when
, see §19.7(iii).

