19.5 Maclaurin and Related Expansions19.7 Connection Formulas

§19.6 Special Cases

Contents

§19.6(i) Complete Elliptic Integrals

Exact values of \mathop{K\/}\nolimits\!\left(k\right) and \mathop{E\/}\nolimits\!\left(k\right) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) and Cooper et al. (2006).

§19.6(iv) \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)

Circular and hyperbolic cases, including Cauchy principal values, are unified by using \mathop{R_{C}\/}\nolimits\!\left(x,y\right). Let c={\mathop{\csc\/}\nolimits^{{2}}}\phi\neq\alpha^{2} and \Delta=\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}. Then

19.6.11
\mathop{\Pi\/}\nolimits\!\left(0,\alpha^{2},k\right)=0,
\mathop{\Pi\/}\nolimits\!\left(\phi,0,0\right)=\phi,
\mathop{\Pi\/}\nolimits\!\left(\phi,1,0\right)=\mathop{\tan\/}\nolimits\phi.
19.6.12
\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},0\right)=\mathop{R_{C}\/}\nolimits\!\left(c-1,c-\alpha^{2}\right),
\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},1\right)=\frac{1}{1-\alpha^{2}}\left(\mathop{R_{C}\/}\nolimits\!\left(c,c-1\right)-\alpha^{2}\mathop{R_{C}\/}\nolimits\!\left(c,c-\alpha^{2}\right)\right),
\mathop{\Pi\/}\nolimits\!\left(\phi,1,1\right)=\tfrac{1}{2}(\mathop{R_{C}\/}\nolimits\!\left(c,c-1\right)+\sqrt{c}(c-1)^{{-1}}).
19.6.13
\mathop{\Pi\/}\nolimits\!\left(\phi,0,k\right)=\mathop{F\/}\nolimits\!\left(\phi,k\right),
\mathop{\Pi\/}\nolimits\!\left(\phi,k^{2},k\right)=\frac{1}{{k^{{\prime}}}^{2}}\left(\mathop{E\/}\nolimits\!\left(\phi,k\right)-\frac{k^{2}}{\Delta}\mathop{\sin\/}\nolimits\phi\mathop{\cos\/}\nolimits\phi\right),
\mathop{\Pi\/}\nolimits\!\left(\phi,1,k\right)=\mathop{F\/}\nolimits\!\left(\phi,k\right)-\frac{1}{{k^{{\prime}}}^{2}}(\mathop{E\/}\nolimits\!\left(\phi,k\right)-\Delta\mathop{\tan\/}\nolimits\phi).
19.6.14
\mathop{\Pi\/}\nolimits\!\left(\tfrac{1}{2}\pi,\alpha^{2},k\right)=\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right),
\lim _{{\phi\to 0}}\ifrac{\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)}{\phi}=1.

For the Cauchy principal value of \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right) when \alpha^{2}>c, see §19.7(iii).