13.8 Asymptotic Approximations for Large Parameters13.10 Integrals

§13.9 Zeros

Contents

§13.9(i) Zeros of \mathop{M\/}\nolimits\!\left(a,b,z\right)

If a and b-a\neq 0,-1,-2,\dots, then \mathop{M\/}\nolimits\!\left(a,b,z\right) has infinitely many z-zeros in \Complex. When a,b\in\Real the number of real zeros is finite. Let p(a,b) be the number of positive zeros. Then

13.9.1p(a,b)=\left\lceil-a\right\rceil,a<0, b\geq 0,
13.9.2p(a,b)=0,a\geq 0, b\geq 0,
13.9.3p(a,b)=1,a\geq 0, -1<b<0,
13.9.4p(a,b)=\left\lfloor-\tfrac{1}{2}b\right\rfloor-\left\lfloor-\tfrac{1}{2}(b+1)\right\rfloor,a\geq 0, b\leq-1.
13.9.5p(a,b)=\left\lceil-a\right\rceil-\left\lceil-b\right\rceil,\left\lceil-a\right\rceil\geq\left\lceil-b\right\rceil, a<0, b<0,
13.9.6p(a,b)=\left\lfloor\tfrac{1}{2}\left(\left\lceil-b\right\rceil-\left\lceil-a\right\rceil+1\right)\right\rfloor-\left\lfloor\tfrac{1}{2}\left(\left\lceil-b\right\rceil-\left\lceil-a\right\rceil\right)\right\rfloor,\left\lceil-b\right\rceil>\left\lceil-a\right\rceil>0.

The number of negative real zeros n(a,b) is given by

13.9.7n(a,b)=p(b-a,b).

When a<0 and b>0 let \phi _{r}, r=1,2,3,\dots, be the positive zeros of \mathop{M\/}\nolimits\!\left(a,b,x\right) arranged in increasing order of magnitude, and let j_{{b-1,r}} be the rth positive zero of the Bessel function \mathop{J_{{b-1}}\/}\nolimits\!\left(x\right)10.21(i)). Then

13.9.8\phi _{r}=\frac{j_{{b-1,r}}^{2}}{2b-4a}\left(1+\frac{2b(b-2)+j_{{b-1,r}}^{2}}{3(2b-4a)^{2}}\right)+\mathop{O\/}\nolimits\!\left(\frac{1}{a^{5}}\right),

as a\to-\infty with r fixed.

Inequalities for \phi _{r} are given in Gatteschi (1990), and identities involving infinite series of all of the complex zeros of \mathop{M\/}\nolimits\!\left(a,b,x\right) are given in Ahmed and Muldoon (1980).

For fixed a,b\in\Complex the large z-zeros of \mathop{M\/}\nolimits\!\left(a,b,z\right) satisfy

13.9.9z=\pm(2n+a)\pi i+\mathop{\ln\/}\nolimits\!\left(-\frac{\mathop{\Gamma\/}\nolimits\!\left(a\right)}{\mathop{\Gamma\/}\nolimits\!\left(b-a\right)}\left(\pm 2n\pi i\right)^{{b-2a}}\right)+\mathop{O\/}\nolimits\!\left(n^{{-1}}\mathop{\ln\/}\nolimits n\right),

where n is a large positive integer, and the logarithm takes its principal value (§4.2(i)).

Let P_{{\alpha}} denote the closure of the domain that is bounded by the parabola y^{2}=4\alpha(x+\alpha) and contains the origin. Then \mathop{M\/}\nolimits\!\left(a,b,z\right) has no zeros in the regions P_{{\ifrac{b}{a}}}, if 0<b\leq a; P_{{1}}, if 1\leq a\leq b; P_{{\alpha}}, where \alpha=\ifrac{(2a-b+ab)}{(a(a+1))}, if 0<a<1 and a\leq b<\ifrac{2a}{(1-a)}. The same results apply for the nth partial sums of the Maclaurin series (13.2.2) of \mathop{M\/}\nolimits\!\left(a,b,z\right).

More information on the location of real zeros can be found in Zarzo et al. (1995) and Segura (2008).

For fixed b and z in \Complex the large a-zeros of \mathop{M\/}\nolimits\!\left(a,b,z\right) are given by

13.9.10a=-\frac{\pi^{2}}{4z}\left(n^{2}+(b-\tfrac{3}{2})n\right)-\frac{1}{16z}\left((b-\tfrac{3}{2})^{2}\pi^{2}+\tfrac{4}{3}z^{2}-8b(z-1)-4b^{2}-3\right)+\mathop{O\/}\nolimits\!\left(n^{{-1}}\right),

where n is a large positive integer.

For fixed a and z in \Complex the function \mathop{M\/}\nolimits\!\left(a,b,z\right) has only a finite number of b-zeros.

§13.9(ii) Zeros of \mathop{U\/}\nolimits\!\left(a,b,z\right)

For fixed a and b in \Complex, \mathop{U\/}\nolimits\!\left(a,b,z\right) has a finite number of z-zeros in the sector |\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{3}{2}\pi-\delta(<\tfrac{3}{2}\pi). Let T(a,b) be the total number of zeros in the sector |\mathop{\mathrm{ph}\/}\nolimits z|<\pi, P(a,b) be the corresponding number of positive zeros, and a, b, and a-b+1 be nonintegers. For the case b\leq 1

13.9.11T(a,b)=\left\lfloor-a\right\rfloor+1,a<0, \mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)>0,
13.9.12T(a,b)=\left\lfloor-a\right\rfloor,a<0, \mathop{\Gamma\/}\nolimits\!\left(a\right)\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)<0,
13.9.13T(a,b)=0,a>0,

and

13.9.14P(a,b)=\left\lceil b-a-1\right\rceil,a+1<b,
13.9.15P(a,b)=0,a+1\geq b.

For the case b\geq 1 we can use T(a,b)=T(a-b+1,2-b) and P(a,b)=P(a-b+1,2-b).

In Wimp (1965) it is shown that if a,b\in\Real and 2a-b>-1, then \mathop{U\/}\nolimits\!\left(a,b,z\right) has no zeros in the sector |\mathop{\mathrm{ph}\/}\nolimits{z}|\leq\frac{1}{2}\pi.

Inequalities for the zeros of \mathop{U\/}\nolimits\!\left(a,b,x\right) are given in Gatteschi (1990). See also Segura (2008).

For fixed b and z in \Complex the large a-zeros of \mathop{U\/}\nolimits\!\left(a,b,z\right) are given by

13.9.16a\sim-n-\frac{2}{\pi}\sqrt{zn}-\frac{2z}{\pi^{2}}+\tfrac{1}{2}b+\tfrac{1}{4}+\frac{z^{2}\left(\frac{1}{3}-4\pi^{{-2}}\right)+z-(b-1)^{2}+\frac{1}{4}}{4\pi\sqrt{zn}}+\mathop{O\/}\nolimits\!\left(\frac{1}{n}\right),

where n is a large positive integer.

For fixed a and z in \Complex, \mathop{U\/}\nolimits\!\left(a,b,z\right) has two infinite strings of b-zeros that are asymptotic to the imaginary axis as |b|\to\infty.