33.5 Limiting Forms for Small \rho, Small |\eta|, or Large \ell33.7 Integral Representations

§33.6 Power-Series Expansions in \rho

where a=1+\ell\pm i\eta and \mathop{\psi\/}\nolimits\!\left(x\right)={\mathop{\Gamma\/}\nolimits^{{\prime}}}\!\left(x\right)/\mathop{\Gamma\/}\nolimits\!\left(x\right)5.2(i)).

The series (33.6.1), (33.6.2), and (33.6.5) converge for all finite values of \rho. Corresponding expansions for {\mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits^{{\prime}}}\!\left(\eta,\rho\right) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).