19.7 Connection Formulas19.9 Inequalities

§19.8 Quadratic Transformations

Contents

§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM)

When a_{0} and g_{0} are positive numbers, define

19.8.1
a_{{n+1}}=\frac{a_{n}+g_{n}}{2},
g_{{n+1}}=\sqrt{a_{n}g_{n}},n=0,1,2,\dots.

As n\to\infty, a_{n} and g_{n} converge to a common limit \mathop{M\/}\nolimits\!\left(a_{0},g_{0}\right) called the AGM (Arithmetic-Geometric Mean) of a_{0} and g_{0}. By symmetry in a_{0} and g_{0} we may assume a_{0}\geq g_{0} and define

19.8.2c_{n}=\sqrt{a_{n}^{2}-g_{n}^{2}}.

Then

19.8.3c_{{n+1}}=\frac{a_{n}-g_{n}}{2}=\frac{c_{n}^{2}}{4a_{{n+1}}},

showing that the convergence of c_{n} to 0 and of a_{n} and g_{n} to \mathop{M\/}\nolimits\!\left(a_{0},g_{0}\right) is quadratic in each case.

The AGM appears in

19.8.6\mathop{E\/}\nolimits\!\left(k\right)=\frac{\pi}{2\!\mathop{M\/}\nolimits\!\left(1,k^{{\prime}}\right)}\left(a_{0}^{2}-\sum _{{n=0}}^{{\infty}}2^{{n-1}}c_{n}^{2}\right)=\mathop{K\/}\nolimits\!\left(k\right)\left(a_{1}^{2}-\sum _{{n=2}}^{{\infty}}2^{{n-1}}c_{n}^{2}\right),-\infty<k^{2}<1, a_{0}=1, g_{0}=k^{{\prime}},

and in

19.8.7\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)=\frac{\pi}{4\!\mathop{M\/}\nolimits\!\left(1,k^{{\prime}}\right)}\left(2+\frac{\alpha^{2}}{1-\alpha^{2}}\sum _{{n=0}}^{{\infty}}Q_{n}\right),-\infty<k^{2}<1, -\infty<\alpha^{2}<1,

where a_{0}=1, g_{0}=k^{{\prime}}, p_{0}^{2}=1-\alpha^{2}, Q_{0}=1, and

19.8.8
p_{{n+1}}=\frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}},
\varepsilon _{n}=\frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^{2}+a_{n}g_{n}},
Q_{{n+1}}=\tfrac{1}{2}Q_{n}\varepsilon _{n},n=0,1,\dots.

Again, p_{n} and \varepsilon _{n} converge quadratically to \mathop{M\/}\nolimits\!\left(a_{0},g_{0}\right) and 0, respectively, and Q_{n} converges to 0 faster than quadratically. If \alpha^{2}>1, then the Cauchy principal value is

19.8.9\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)=\frac{\pi}{4\!\mathop{M\/}\nolimits\!\left(1,k^{{\prime}}\right)}\frac{k^{2}}{k^{2}-\alpha^{2}}\sum _{{n=0}}^{{\infty}}Q_{n},-\infty<k^{2}<1, 1<\alpha^{2}<\infty,

where (19.8.8) still applies, but with

19.8.10p_{0}^{2}=1-(k^{2}/\alpha^{2}).

§19.8(ii) Landen Transformations

Descending Landen Transformation

Let

19.8.11
k_{1}=\frac{1-k^{{\prime}}}{1+k^{{\prime}}},
\phi _{1}=\phi+\mathop{\mathrm{arctan}\/}\nolimits\!\left(k^{{\prime}}\mathop{\tan\/}\nolimits\phi\right)=\mathop{\mathrm{arcsin}\/}\nolimits\!\left((1+k^{{\prime}})\frac{\mathop{\sin\/}\nolimits\phi\mathop{\cos\/}\nolimits\phi}{\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}}\right).

(Note that 0<k<1 and 0<\phi<\pi/2 imply k_{1}<k and \phi<\phi _{1}<2\phi, and also that \phi=\pi/2 implies \phi _{1}=\pi.) Then

19.8.12
\mathop{K\/}\nolimits\!\left(k\right)=(1+k_{1})\mathop{K\/}\nolimits\!\left(k_{1}\right),
\mathop{E\/}\nolimits\!\left(k\right)=(1+k^{{\prime}})\mathop{E\/}\nolimits\!\left(k_{1}\right)-k^{{\prime}}\mathop{K\/}\nolimits\!\left(k\right).
19.8.13
\mathop{F\/}\nolimits\!\left(\phi,k\right)=\tfrac{1}{2}(1+k_{1})\mathop{F\/}\nolimits\!\left(\phi _{1},k_{1}\right),
\mathop{E\/}\nolimits\!\left(\phi,k\right)=\tfrac{1}{2}(1+k^{{\prime}})\mathop{E\/}\nolimits\!\left(\phi _{1},k_{1}\right)-k^{{\prime}}\mathop{F\/}\nolimits\!\left(\phi,k\right)+\tfrac{1}{2}(1-k^{{\prime}})\mathop{\sin\/}\nolimits\phi _{1}.
19.8.142(k^{2}-\alpha^{2})\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)=\frac{\omega^{2}-\alpha^{2}}{1+k^{{\prime}}}\mathop{\Pi\/}\nolimits\!\left(\phi _{1},\alpha _{1}^{2},k_{1}\right)+k^{2}\mathop{F\/}\nolimits\!\left(\phi,k\right)-{(1+k^{{\prime}})\alpha _{1}^{2}\mathop{R_{C}\/}\nolimits\!\left(c_{1},c_{1}-\alpha _{1}^{2}\right)},

where

19.8.15
\omega^{2}=\frac{k^{2}-\alpha^{2}}{1-\alpha^{2}},
\alpha _{1}^{2}=\frac{\alpha^{2}\omega^{2}}{(1+k^{{\prime}})^{2}},
c_{1}={\mathop{\csc\/}\nolimits^{{2}}}\phi _{1}.

§19.8(iii) Gauss Transformation

We consider only the descending Gauss transformation because its (ascending) inverse moves \mathop{F\/}\nolimits\!\left(\phi,k\right) closer to the singularity at k=\mathop{\sin\/}\nolimits\phi=1. Let

19.8.18
k_{1}=(1-k^{{\prime}})/(1+k^{{\prime}}),
\mathop{\sin\/}\nolimits\psi _{1}=\frac{(1+k^{{\prime}})\mathop{\sin\/}\nolimits\phi}{1+\Delta},
\Delta=\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}.

(Note that 0<k<1 and 0<\phi<\pi/2 imply k_{1}<k and \psi _{1}<\phi, and also that \phi=\pi/2 implies \psi _{1}=\pi/2, thus preserving completeness.) Then

19.8.19
\mathop{F\/}\nolimits\!\left(\phi,k\right)=(1+k_{1})\mathop{F\/}\nolimits\!\left(\psi _{1},k_{1}\right),
\mathop{E\/}\nolimits\!\left(\phi,k\right)=(1+k^{{\prime}})\mathop{E\/}\nolimits\!\left(\psi _{1},k_{1}\right)-k^{{\prime}}\mathop{F\/}\nolimits\!\left(\phi,k\right)+(1-\Delta)\mathop{\cot\/}\nolimits\phi,
19.8.20\rho\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)=\frac{4}{1+k^{{\prime}}}\mathop{\Pi\/}\nolimits\!\left(\psi _{1},\alpha^{2}_{1},k_{1}\right)+(\rho-1)\mathop{F\/}\nolimits\!\left(\phi,k\right)-\mathop{R_{C}\/}\nolimits\!\left(c-1,c-\alpha^{2}\right),

where

19.8.21
\rho=\sqrt{1-(k^{2}/\alpha^{2})},
\alpha _{1}^{2}=\alpha^{2}(1+\rho)^{2}/(1+k^{{\prime}})^{2},
c={\mathop{\csc\/}\nolimits^{{2}}}\phi.

If 0<\alpha^{2}<k^{2}, then \rho is pure imaginary.