Bibliography RBibliography T

Bibliography S

ABCDEFGHIJKLMNOPQR♦S♦TUVWXYZ
  • L. Saalschütz (1893)
    Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen,
    Springer-Verlag, Berlin (German).
  • A. Sachse (1882)
    Über die Darstellung der Bernoullischen und Eulerschen Zahlen durch Determinanten,
    Archiv für Mathematik und Physik 68, pp. 427–432 (German).
  • B. E. Sagan (2001)
    The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions,
    2nd edition, Graduate Texts in Mathematics, Vol. 203, Springer-Verlag, New York.
  • R. P. Sagar (1991a)
    A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals,
    Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • R. P. Sagar (1991b)
    On the evaluation of the Fermi-Dirac integrals,
    Astrophys. J. 376 (1, part 1), pp. 364–366.
  • SAGE (free interactive system)
  • H. Sakai (2001)
    Rational surfaces associated with affine root systems and geometry of the Painlevé equations,
    Comm. Math. Phys. 220 (1), pp. 165–229.
  • K. L. Sala (1989)
    Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean,
    SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • L. Z. Salchev and V. B. Popov (1976)
    A property of the zeros of cross-product Bessel functions of different orders,
    Z. Angew. Math. Mech. 56 (2), pp. 120–121.
  • H. E. Salzer (1955)
    Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms,
    Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • S. Sandström and C. Ackrén (2007)
    Note on the complex zeros of H^{{\prime}}_{\nu}(x)+i\zeta H_{\nu}(x)=0,
    J. Comput. Appl. Math. 201 (1), pp. 3–7.
  • P. Sarnak (1999)
    Quantum Chaos, Symmetry and Zeta Functions. Lecture I, Quantum Chaos,
    in Current Developments in Mathematics, 1997 (Cambridge, MA),
    pp. 127–144.
  • C. W. Schelin (1983)
    Calculator function approximation,
    Amer. Math. Monthly 90 (5), pp. 317–325.
  • J. L. Schiff (1999)
    The Laplace Transform: Theory and Applications,
    Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • T. Schmelzer and L. N. Trefethen (2007)
    Computing the gamma function using contour integrals and rational approximations,
    SIAM J. Numer. Anal. 45 (2), pp. 558–571.
  • D. Schmidt and G. Wolf (1979)
    A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations,
    SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • D. Schmidt (1979)
    Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen,
    J. Reine Angew. Math. 309, pp. 127–148.
  • I. J. Schoenberg (1971)
    Norm inequalities for a certain class of {C}^{{\infty}} functions,
    Israel J. Math. 10, pp. 364–372.
  • I. J. Schoenberg (1973)
    Cardinal Spline Interpolation,
    Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • L. Schoenfeld (1976)
    Sharper bounds for the Chebyshev functions \theta(x) and \psi(x). II,
    Math. Comp. 30 (134), pp. 337–360.
  • J. L. Schonfelder (1978)
    Chebyshev expansions for the error and related functions,
    Math. Comp. 32 (144), pp. 1232–1240.
  • J. L. Schonfelder (1980)
    Very high accuracy Chebyshev expansions for the basic trigonometric functions,
    Math. Comp. 34 (149), pp. 237–244.
  • F. Schottky (1903)
    Über die Moduln der Thetafunctionen,
    Acta Math. 27 (1), pp. 235–288.
  • M. R. Schroeder (2006)
    Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity,
    4th edition, Springer-Verlag, Berlin.
  • L. S. Schulman (1981)
    Techniques and Applications of Path Integration,
    John Wiley & Sons Inc., New York.
  • K. Schulten and R. G. Gordon (1976)
    Recursive evaluation of 3j- and 6j- coefficients,
    Comput. Phys. Comm. 11 (2), pp. 269–278.
  • K. Schulten and R. G. Gordon (1975a)
    Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta,
    J. Mathematical Phys. 16 (10), pp. 1961–1970.
  • K. Schulten and R. G. Gordon (1975b)
    Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta,
    J. Mathematical Phys. 16 (10), pp. 1971–1988.
  • Z. Schulten, D. G. M. Anderson and R. G. Gordon (1979)
    An algorithm for the evaluation of the complex Airy functions,
    J. Comput. Phys. 31 (1), pp. 60–75.
  • L. L. Schumaker (1981)
    Spline Functions: Basic Theory,
    John Wiley & Sons Inc., New York.
  • I. J. Schwatt (1962)
    An Introduction to the Operations with Series,
    2nd edition, Chelsea Publishing Co., New York.
  • T. Schäfer and E. V. Shuryak (1998)
    Instantons in QCD,
    Rev. Modern Phys. 70 (2), pp. 323–425.
  • F. W. Schäfke and A. Finsterer (1990)
    On Lindelöf’s error bound for Stirling’s series,
    J. Reine Angew. Math. 404, pp. 135–139.
  • F. W. Schäfke and D. Schmidt (1966)
    Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III,
    Numer. Math. 8 (1), pp. 68–71.
  • F. W. Schäfke (1983)
    Über einige Integrale mit Produkten von Mathieu-Funktionen,
    Arch. Math. (Basel) 41 (2), pp. 152–162.
  • F. W. Schäfke and H. Groh (1962)
    Zur Berechnung der Eigenwerte der Sphäroiddifferentialgleichung.,
    Numer. Math. 4, pp. 310–312 (German).
  • F. W. Schäfke (1960)
    Reihenentwicklungen analytischer Funktionen nach Biorthogonalsystemen spezieller Funktionen. I,
    Math. Z. 74, pp. 436–470.
  • F. W. Schäfke (1961a)
    Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung I,
    Numer. Math. 3 (1), pp. 30–38.
  • F. W. Schäfke (1961b)
    Reihenentwicklungen analytischer Funktionen nach Biorthogonalsystemen spezieller Funktionen. II,
    Math. Z. 75, pp. 154–191.
  • R. Schürer (2004)
    Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS,
    in Monte Carlo and Quasi-Monte Carlo Methods 2002,
    pp. 393–406.
  • R. S. Scorer (1950)
    Numerical evaluation of integrals of the form I=\int _{{x_{1}}}^{{x_{2}}}f(x)e^{{i\phi(x)}}dx and the tabulation of the function \mathop{\mathrm{Gi}\/}\nolimits(z)=(1/\pi)\int _{0}^{{\infty}}\mathop{\sin\/}\nolimits(uz+\tfrac{1}{3}u^{3})du,
    Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
  • J. B. Seaborn (1991)
    Hypergeometric Functions and Their Applications,
    Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • M. J. Seaton and G. Peach (1962)
    The determination of phases of wave functions,
    Proc. Phys. Soc. 79 (6), pp. 1296–1297.
  • M. J. Seaton (1982)
    Coulomb functions analytic in the energy,
    Comput. Phys. Comm. 25 (1), pp. 87–95.
  • M. J. Seaton (1983)
    Quantum defect theory,
    Rep. Prog. Phys. 46 (2), pp. 167–257.
  • M. J. Seaton (1984)
    The accuracy of iterated JWBK approximations for Coulomb radial functions,
    Comput. Phys. Comm. 32 (2), pp. 115–119.
  • M. J. Seaton (2002a)
    Coulomb functions for attractive and repulsive potentials and for positive and negative energies,
    Comput. Phys. Comm. 146 (2), pp. 225–249.
  • M. J. Seaton (2002b)
    FGH, a code for the calculation of Coulomb radial wave functions from series expansions,
    Comput. Phys. Comm. 146 (2), pp. 250–253.
  • M. J. Seaton (2002c)
    NUMER, a code for Numerov integrations of Coulomb functions,
    Comput. Phys. Comm. 146 (2), pp. 254–260.
  • J. D. Secada (1999)
    Numerical evaluation of the Hankel transform,
    Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • H. Segur and M. J. Ablowitz (1981)
    Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent,
    Phys. D 3 (1-2), pp. 165–184.
  • J. Segura, P. Fernández de Córdoba and Yu. L. Ratis (1997)
    A code to evaluate modified Bessel functions based on the continued fraction method,
    Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • J. Segura and A. Gil (1998)
    Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments,
    Comput. Phys. Comm. 115 (1), pp. 69–86.
  • J. Segura and A. Gil (1999)
    Evaluation of associated Legendre functions off the cut and parabolic cylinder functions,
    Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • J. Segura (1998)
    A global Newton method for the zeros of cylinder functions,
    Numer. Algorithms 18 (3-4), pp. 259–276.
  • J. Segura (2001)
    Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros,
    Math. Comp. 70 (235), pp. 1205–1220.
  • J. Segura (2002)
    The zeros of special functions from a fixed point method,
    SIAM J. Numer. Anal. 40 (1), pp. 114–133.
  • J. Segura (2008)
    Interlacing of the zeros of contiguous hypergeometric functions,
    Numer. Algorithms 49 (1-4), pp. 387–407.
  • N. Seiberg and D. Shih (2005)
    Flux vacua and branes of the minimal superstring,
    J. High Energy Phys..
  • R. G. Selfridge and J. E. Maxfield (1958)
    A Table of the Incomplete Elliptic Integral of the Third Kind,
    Dover Publications Inc., New York.
  • J.-P. Serre (1973)
    A Course in Arithmetic,
    Graduate Texts in Mathematics, Vol. 7, Springer-Verlag, New York.
  • R. Shail (1978)
    Lamé polynomial solutions to some elliptic crack and punch problems,
    Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • R. Shail (1980)
    On integral representations for Lamé and other special functions,
    SIAM J. Math. Anal. 11 (4), pp. 702–723.
  • H. Shanker (1939)
    On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions,
    J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a)
    On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series,
    J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • H. Shanker (1940b)
    On certain integrals and expansions involving Weber’s parabolic cylinder functions,
    J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
  • H. Shanker (1940c)
    On the expansion of the product of two parabolic cylinder functions of non integral order,
    Proc. Benares Math. Soc. (N. S.) 2, pp. 61–68.
  • D. Shanks (1955)
    Non-linear transformations of divergent and slowly convergent sequences,
    J. Math. Phys. 34, pp. 1–42.
  • G. Shanmugam (1978)
    Parabolic Cylinder Functions and their Application in Symmetric Two-centre Shell Model,
    Matscience Rep., Vol. 91, Aarhus, pp. P81–P89.
  • J. Shao and P. Hänggi (1998)
    Decoherent dynamics of a two-level system coupled to a sea of spins,
    Phys. Rev. Lett. 81 (26), pp. 5710–5713.
  • J. Shapiro (1970)
    Arbitrary 3n-j symbols for \rm{SU}(2),
    Comput. Phys. Comm. 1 (3), pp. 207–215.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri and D. K. Hoffman (1992)
    Numerical evaluation of spherical Bessel transforms via fast Fourier transforms,
    J. Comput. Phys. 100 (2), pp. 294–296.
  • A. Sharples (1967)
    Uniform asymptotic forms of modified Mathieu functions,
    Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sharples (1971)
    Uniform asymptotic expansions of modified Mathieu functions,
    J. Reine Angew. Math. 247, pp. 1–17.
  • I. Shavitt and M. Karplus (1965)
    Gaussian-transform method for molecular integrals. I. Formulation for energy integrals,
    J. Chem. Phys. 43 (2), pp. 398–414.
  • I. Shavitt (1963)
    The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics,
    in Methods in Computational Physics: Advances in Research and Applications,
    (S. Fernbach and M. Rotenberg Eds.), Vol. 2, pp. 1–45.
  • D. C. Shaw (1985)
    Perturbational results for diffraction of water-waves by nearly-vertical barriers,
    IMA J. Appl. Math. 34 (1), pp. 99–117.
  • N. T. Shawagfeh (1992)
    The Laplace transforms of products of Airy functions,
    Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • B. L. Shea (1988)
    Algorithm AS 239. Chi-squared and incomplete gamma integral,
    Appl. Statist. 37 (3), pp. 466–473.
  • L. Shen (1981)
    The elliptical microstrip antenna with circular polarization,
    IEEE Trans. Antennas and Propagation 29 (1), pp. 90–94.
  • L. Shen (1998)
    On an identity of Ramanujan based on the hypergeometric series \mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left(\frac{1}{3},\frac{2}{3};\frac{1}{2};x\right),
    J. Number Theory 69 (2), pp. 125–134.
  • M. M. Shepherd and J. G. Laframboise (1981)
    Chebyshev approximation of (1+2x)\,\mathop{\exp\/}\nolimits(x^{{2}})\,\mathrm{erfc}\, x in 0\leq x<\infty,
    Math. Comp. 36 (153), pp. 249–253.
  • M. E. Sherry (1959)
    The zeros and maxima of the Airy function and its first derivative to 25 significant figures,
    Report AFCRC-TR-59-135, ASTIA Document No. AD214568
    Air Research and Development Command, U.S. Air Force, Bedford, MA.
  • G. Shimura (1982)
    Confluent hypergeometric functions on tube domains,
    Math. Ann. 260 (3), pp. 269–302.
  • T. Shiota (1986)
    Characterization of Jacobian varieties in terms of soliton equations,
    Invent. Math. 83 (2), pp. 333–382.
  • R. B. Shirts (1993a)
    The computation of eigenvalues and solutions of Mathieu’s differential equation for noninteger order,
    ACM Trans. Math. Software 19 (3), pp. 377–390.
  • R. B. Shirts (1993b)
    Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order,
    ACM Trans. Math. Software 19 (3), pp. 391–406.
  • P. N. Shivakumar and R. Wong (1988)
    Error bounds for a uniform asymptotic expansion of the Legendre function \mathop{P^{{-m}}_{{n}}\/}\nolimits\!\left({\rm cosh}\  z\right),
    Quart. Appl. Math. 46 (3), pp. 473–488.
  • P. N. Shivakumar and J. Xue (1999)
    On the double points of a Mathieu equation,
    J. Comput. Appl. Math. 107 (1), pp. 111–125.
  • B. W. Shore and D. H. Menzel (1968)
    Principles of Atomic Spectra,
    John Wiley & Sons Ltd., New York.
  • A. Sidi (1997)
    Computation of infinite integrals involving Bessel functions of arbitrary order by the \overline{D}-transformation,
    J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • A. Sidi (2003)
    Practical Extrapolation Methods: Theory and Applications,
    Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
  • A. Sidi (2004)
    Euler-Maclaurin expansions for integrals with endpoint singularities: A new perspective,
    Numer. Math. 98 (2), pp. 371–387.
  • C. L. Siegel (1971)
    Topics in Complex Function Theory. Vol. II: Automorphic Functions and Abelian Integrals,
    Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • C. L. Siegel (1973)
    Topics in Complex Function Theory. Vol. III: Abelian Functions and Modular Functions of Several Variables,
    Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience, [John Wiley & Sons, Inc], New York-London-Sydney.
  • C. L. Siegel (1988)
    Topics in Complex Function Theory. Vol. I: Elliptic Functions and Uniformization Theory,
    Wiley Classics Library, John Wiley & Sons Inc., New York.
  • C. L. Siegel (1935)
    Über die analytische Theorie der quadratischen Formen,
    Ann. of Math. (2) 36 (3), pp. 527–606.
  • K. M. Siegel and F. B. Sleator (1954)
    Inequalities involving cylindrical functions of nearly equal argument and order,
    Proc. Amer. Math. Soc. 5 (3), pp. 337–344.
  • K. M. Siegel (1953)
    An inequality involving Bessel functions of argument nearly equal to their order,
    Proc. Amer. Math. Soc. 4 (6), pp. 858–859.
  • C. E. Siewert and E. E. Burniston (1973)
    Exact analytical solutions of ze^{z}=a,
    J. Math. Anal. Appl. 43 (3), pp. 626–632.
  • J. H. Silverman and J. Tate (1992)
    Rational Points on Elliptic Curves,
    Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • R. A. Silverman (1967)
    Introductory Complex Analysis,
    Prentice-Hall, Inc., Englewood Cliffs, N.J..
  • G. F. Simmons (1972)
    Differential Equations with Applications and Historical Notes,
    McGraw-Hill Book Co., New York.
  • B. Simon (1982)
    Large orders and summability of eigenvalue perturbation theory: A mathematical overview,
    Int. J. Quantum Chem. 21, pp. 3–25.
  • B. Simon (2005a)
    Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory,
    American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2005b)
    Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory,
    American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • R. Sips (1949)
    Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales,
    Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • R. Sips (1959)
    Représentation asymptotique des fonctions de Mathieu et des fonctions sphéroidales. II,
    Trans. Amer. Math. Soc. 90 (2), pp. 340–368.
  • R. Sips (1965)
    Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill,
    Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
  • R. Sips (1967)
    Répartition du courant alternatif dans un conducteur cylindrique de section elliptique,
    Acad. Roy. Belg. Bull. Cl. Sci. (5) 53 (8), pp. 861–878.