-
L. Saalschütz (1893)
Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen,
Springer-Verlag, Berlin (German).
-
A. Sachse (1882)
Über die Darstellung der Bernoullischen und Eulerschen Zahlen durch Determinanten,
Archiv für Mathematik und Physik 68, pp. 427–432 (German).
-
B. E. Sagan (2001)
The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions,
2nd edition, Graduate Texts in Mathematics, Vol. 203, Springer-Verlag, New York.
-
R. P. Sagar (1991a)
A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals,
Comput. Phys. Comm. 66 (2-3), pp. 271–275.
-
R. P. Sagar (1991b)
On the evaluation of the Fermi-Dirac integrals,
Astrophys. J. 376 (1, part 1), pp. 364–366.
-
SAGE (free interactive system)
-
H. Sakai (2001)
Rational surfaces associated with affine root systems and geometry of the Painlevé equations,
Comm. Math. Phys. 220 (1), pp. 165–229.
-
K. L. Sala (1989)
Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean,
SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
-
L. Z. Salchev and V. B. Popov (1976)
A property of the zeros of cross-product Bessel functions of different orders,
Z. Angew. Math. Mech. 56 (2), pp. 120–121.
-
H. E. Salzer (1955)
Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms,
Math. Tables Aids Comput. 9 (52), pp. 164–177.
-
S. Sandström and C. Ackrén (2007)
Note on the complex zeros of 
,
J. Comput. Appl. Math. 201 (1), pp. 3–7.
-
P. Sarnak (1999)
Quantum Chaos, Symmetry and Zeta Functions. Lecture I, Quantum Chaos,
in Current Developments in Mathematics, 1997 (Cambridge, MA),
pp. 127–144.
-
C. W. Schelin (1983)
Calculator function approximation,
Amer. Math. Monthly 90 (5), pp. 317–325.
-
J. L. Schiff (1999)
The Laplace Transform: Theory and Applications,
Undergraduate Texts in Mathematics, Springer-Verlag, New York.
-
T. Schmelzer and L. N. Trefethen (2007)
Computing the gamma function using contour integrals and rational approximations,
SIAM J. Numer. Anal. 45 (2), pp. 558–571.
-
D. Schmidt and G. Wolf (1979)
A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations,
SIAM J. Math. Anal. 10 (4), pp. 823–838.
-
D. Schmidt (1979)
Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen,
J. Reine Angew. Math. 309, pp. 127–148.
-
I. J. Schoenberg (1971)
Norm inequalities for a certain class of
functions,
Israel J. Math. 10, pp. 364–372.
-
I. J. Schoenberg (1973)
Cardinal Spline Interpolation,
Society for Industrial and Applied Mathematics, Philadelphia, PA.
-
L. Schoenfeld (1976)
Sharper bounds for the Chebyshev functions
and
. II,
Math. Comp. 30 (134), pp. 337–360.
-
J. L. Schonfelder (1978)
Chebyshev expansions for the error and related functions,
Math. Comp. 32 (144), pp. 1232–1240.
-
J. L. Schonfelder (1980)
Very high accuracy Chebyshev expansions for the basic trigonometric functions,
Math. Comp. 34 (149), pp. 237–244.
-
F. Schottky (1903)
Über die Moduln der Thetafunctionen,
Acta Math. 27 (1), pp. 235–288.
-
M. R. Schroeder (2006)
Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity,
4th edition, Springer-Verlag, Berlin.
-
L. S. Schulman (1981)
Techniques and Applications of Path Integration,
John Wiley & Sons Inc., New York.
-
K. Schulten and R. G. Gordon (1976)
Recursive evaluation of
- and
- coefficients,
Comput. Phys. Comm. 11 (2), pp. 269–278.
-
K. Schulten and R. G. Gordon (1975a)
Exact recursive evaluation of
- and
-coefficients for quantum-mechanical coupling of angular momenta,
J. Mathematical Phys. 16 (10), pp. 1961–1970.
-
K. Schulten and R. G. Gordon (1975b)
Semiclassical approximations to
- and
-coefficients for quantum-mechanical coupling of angular momenta,
J. Mathematical Phys. 16 (10), pp. 1971–1988.
-
Z. Schulten, D. G. M. Anderson and R. G. Gordon (1979)
An algorithm for the evaluation of the complex Airy functions,
J. Comput. Phys. 31 (1), pp. 60–75.
-
L. L. Schumaker (1981)
Spline Functions: Basic Theory,
John Wiley & Sons Inc., New York.
-
I. J. Schwatt (1962)
An Introduction to the Operations with Series,
2nd edition, Chelsea Publishing Co., New York.
-
T. Schäfer and E. V. Shuryak (1998)
Instantons in QCD,
Rev. Modern Phys. 70 (2), pp. 323–425.
-
F. W. Schäfke and A. Finsterer (1990)
On Lindelöf’s error bound for Stirling’s series,
J. Reine Angew. Math. 404, pp. 135–139.
-
F. W. Schäfke and D. Schmidt (1966)
Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III,
Numer. Math. 8 (1), pp. 68–71.
-
F. W. Schäfke (1983)
Über einige Integrale mit Produkten von Mathieu-Funktionen,
Arch. Math. (Basel) 41 (2), pp. 152–162.
-
F. W. Schäfke and H. Groh (1962)
Zur Berechnung der Eigenwerte der Sphäroiddifferentialgleichung.,
Numer. Math. 4, pp. 310–312 (German).
-
F. W. Schäfke (1960)
Reihenentwicklungen analytischer Funktionen nach Biorthogonalsystemen spezieller Funktionen. I,
Math. Z. 74, pp. 436–470.
-
F. W. Schäfke (1961a)
Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung I,
Numer. Math. 3 (1), pp. 30–38.
-
F. W. Schäfke (1961b)
Reihenentwicklungen analytischer Funktionen nach Biorthogonalsystemen spezieller Funktionen. II,
Math. Z. 75, pp. 154–191.
-
R. Schürer (2004)
Adaptive Quasi-Monte Carlo Integration Based on MISER and VEGAS,
in Monte Carlo and Quasi-Monte Carlo Methods 2002,
pp. 393–406.
-
R. S. Scorer (1950)
Numerical evaluation of integrals of the form
and the tabulation of the function 
,
Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
-
J. B. Seaborn (1991)
Hypergeometric Functions and Their Applications,
Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
-
M. J. Seaton and G. Peach (1962)
The determination of phases of wave functions,
Proc. Phys. Soc. 79 (6), pp. 1296–1297.
-
M. J. Seaton (1982)
Coulomb functions analytic in the energy,
Comput. Phys. Comm. 25 (1), pp. 87–95.
-
M. J. Seaton (1983)
Quantum defect theory,
Rep. Prog. Phys. 46 (2), pp. 167–257.
-
M. J. Seaton (1984)
The accuracy of iterated JWBK approximations for Coulomb radial functions,
Comput. Phys. Comm. 32 (2), pp. 115–119.
-
M. J. Seaton (2002a)
Coulomb functions for attractive and repulsive potentials and for positive and negative energies,
Comput. Phys. Comm. 146 (2), pp. 225–249.
-
M. J. Seaton (2002b)
FGH, a code for the calculation of Coulomb radial wave functions from series expansions,
Comput. Phys. Comm. 146 (2), pp. 250–253.
-
M. J. Seaton (2002c)
NUMER, a code for Numerov integrations of Coulomb functions,
Comput. Phys. Comm. 146 (2), pp. 254–260.
-
J. D. Secada (1999)
Numerical evaluation of the Hankel transform,
Comput. Phys. Comm. 116 (2-3), pp. 278–294.
-
H. Segur and M. J. Ablowitz (1981)
Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent,
Phys. D 3 (1-2), pp. 165–184.
-
J. Segura, P. Fernández de Córdoba and Yu. L. Ratis (1997)
A code to evaluate modified Bessel functions based on the continued fraction method,
Comput. Phys. Comm. 105 (2-3), pp. 263–272.
-
J. Segura and A. Gil (1998)
Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments,
Comput. Phys. Comm. 115 (1), pp. 69–86.
-
J. Segura and A. Gil (1999)
Evaluation of associated Legendre functions off the cut and parabolic cylinder functions,
Electron. Trans. Numer. Anal. 9, pp. 137–146.
-
J. Segura (1998)
A global Newton method for the zeros of cylinder functions,
Numer. Algorithms 18 (3-4), pp. 259–276.
-
J. Segura (2001)
Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros,
Math. Comp. 70 (235), pp. 1205–1220.
-
J. Segura (2002)
The zeros of special functions from a fixed point method,
SIAM J. Numer. Anal. 40 (1), pp. 114–133.
-
J. Segura (2008)
Interlacing of the zeros of contiguous hypergeometric functions,
Numer. Algorithms 49 (1-4), pp. 387–407.
-
N. Seiberg and D. Shih (2005)
Flux vacua and branes of the minimal superstring,
J. High Energy Phys..
-
R. G. Selfridge and J. E. Maxfield (1958)
A Table of the Incomplete Elliptic Integral of the Third Kind,
Dover Publications Inc., New York.
-
J.-P. Serre (1973)
A Course in Arithmetic,
Graduate Texts in Mathematics, Vol. 7, Springer-Verlag, New York.
-
R. Shail (1978)
Lamé polynomial solutions to some elliptic crack and punch problems,
Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
-
R. Shail (1980)
On integral representations for Lamé and other special functions,
SIAM J. Math. Anal. 11 (4), pp. 702–723.
-
H. Shanker (1939)
On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions,
J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
-
H. Shanker (1940a)
On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series,
J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
-
H. Shanker (1940b)
On certain integrals and expansions involving Weber’s parabolic cylinder functions,
J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
-
H. Shanker (1940c)
On the expansion of the product of two parabolic cylinder functions of non integral order,
Proc. Benares Math. Soc. (N. S.) 2, pp. 61–68.
-
D. Shanks (1955)
Non-linear transformations of divergent and slowly convergent sequences,
J. Math. Phys. 34, pp. 1–42.
-
G. Shanmugam (1978)
Parabolic Cylinder Functions and their Application in Symmetric Two-centre Shell Model,
Matscience Rep., Vol. 91, Aarhus, pp. P81–P89.
-
J. Shao and P. Hänggi (1998)
Decoherent dynamics of a two-level system coupled to a sea of spins,
Phys. Rev. Lett. 81 (26), pp. 5710–5713.
-
J. Shapiro (1970)
Arbitrary
symbols for 
,
Comput. Phys. Comm. 1 (3), pp. 207–215.
-
O. A. Sharafeddin, H. F. Bowen, D. J. Kouri and D. K. Hoffman (1992)
Numerical evaluation of spherical Bessel transforms via fast Fourier transforms,
J. Comput. Phys. 100 (2), pp. 294–296.
-
A. Sharples (1967)
Uniform asymptotic forms of modified Mathieu functions,
Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
-
A. Sharples (1971)
Uniform asymptotic expansions of modified Mathieu functions,
J. Reine Angew. Math. 247, pp. 1–17.
-
I. Shavitt and M. Karplus (1965)
Gaussian-transform method for molecular integrals. I. Formulation for energy integrals,
J. Chem. Phys. 43 (2), pp. 398–414.
-
I. Shavitt (1963)
The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics,
in Methods in Computational Physics: Advances in Research and Applications,
(S. Fernbach and M. Rotenberg Eds.), Vol. 2, pp. 1–45.
-
D. C. Shaw (1985)
Perturbational results for diffraction of water-waves by nearly-vertical barriers,
IMA J. Appl. Math. 34 (1), pp. 99–117.
-
N. T. Shawagfeh (1992)
The Laplace transforms of products of Airy functions,
Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
-
B. L. Shea (1988)
Algorithm AS 239. Chi-squared and incomplete gamma integral,
Appl. Statist. 37 (3), pp. 466–473.
-
L. Shen (1981)
The elliptical microstrip antenna with circular polarization,
IEEE Trans. Antennas and Propagation 29 (1), pp. 90–94.
-
L. Shen (1998)
On an identity of Ramanujan based on the hypergeometric series 
,
J. Number Theory 69 (2), pp. 125–134.
-
M. M. Shepherd and J. G. Laframboise (1981)
Chebyshev approximation of
in 
,
Math. Comp. 36 (153), pp. 249–253.
-
M. E. Sherry (1959)
The zeros and maxima of the Airy function and its first derivative to 25 significant figures,
Report AFCRC-TR-59-135, ASTIA Document No. AD214568
Air Research and Development Command, U.S. Air Force, Bedford, MA.
-
G. Shimura (1982)
Confluent hypergeometric functions on tube domains,
Math. Ann. 260 (3), pp. 269–302.
-
T. Shiota (1986)
Characterization of Jacobian varieties in terms of soliton equations,
Invent. Math. 83 (2), pp. 333–382.
-
R. B. Shirts (1993a)
The computation of eigenvalues and solutions of Mathieu’s differential equation for noninteger order,
ACM Trans. Math. Software 19 (3), pp. 377–390.
-
R. B. Shirts (1993b)
Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order,
ACM Trans. Math. Software 19 (3), pp. 391–406.
-
P. N. Shivakumar and R. Wong (1988)
Error bounds for a uniform asymptotic expansion of the Legendre function 
,
Quart. Appl. Math. 46 (3), pp. 473–488.
-
P. N. Shivakumar and J. Xue (1999)
On the double points of a Mathieu equation,
J. Comput. Appl. Math. 107 (1), pp. 111–125.
-
B. W. Shore and D. H. Menzel (1968)
Principles of Atomic Spectra,
John Wiley & Sons Ltd., New York.
-
A. Sidi (1997)
Computation of infinite integrals involving Bessel functions of arbitrary order by the
-transformation,
J. Comput. Appl. Math. 78 (1), pp. 125–130.
-
A. Sidi (2003)
Practical Extrapolation Methods: Theory and Applications,
Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
-
A. Sidi (2004)
Euler-Maclaurin expansions for integrals with endpoint singularities: A new perspective,
Numer. Math. 98 (2), pp. 371–387.
-
C. L. Siegel (1971)
Topics in Complex Function Theory. Vol. II: Automorphic Functions and Abelian Integrals,
Interscience Tracts in Pure and Applied Mathematics,
No. 25, Wiley-Interscience [John Wiley & Sons Inc.], New York.
-
C. L. Siegel (1973)
Topics in Complex Function Theory. Vol. III: Abelian Functions and Modular Functions of Several Variables,
Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience, [John Wiley & Sons, Inc], New York-London-Sydney.
-
C. L. Siegel (1988)
Topics in Complex Function Theory. Vol. I: Elliptic Functions and Uniformization Theory,
Wiley Classics Library, John Wiley & Sons Inc., New York.
-
C. L. Siegel (1935)
Über die analytische Theorie der quadratischen Formen,
Ann. of Math. (2) 36 (3), pp. 527–606.
-
K. M. Siegel and F. B. Sleator (1954)
Inequalities involving cylindrical functions of nearly equal argument and order,
Proc. Amer. Math. Soc. 5 (3), pp. 337–344.
-
K. M. Siegel (1953)
An inequality involving Bessel functions of argument nearly equal to their order,
Proc. Amer. Math. Soc. 4 (6), pp. 858–859.
-
C. E. Siewert and E. E. Burniston (1973)
Exact analytical solutions of 
,
J. Math. Anal. Appl. 43 (3), pp. 626–632.
-
J. H. Silverman and J. Tate (1992)
Rational Points on Elliptic Curves,
Undergraduate Texts in Mathematics, Springer-Verlag, New York.
-
R. A. Silverman (1967)
Introductory Complex Analysis,
Prentice-Hall, Inc., Englewood Cliffs, N.J..
-
G. F. Simmons (1972)
Differential Equations with Applications and Historical Notes,
McGraw-Hill Book Co., New York.
-
B. Simon (1982)
Large orders and summability of eigenvalue perturbation theory: A mathematical overview,
Int. J. Quantum Chem. 21, pp. 3–25.
-
B. Simon (2005a)
Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory,
American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
-
B. Simon (2005b)
Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory,
American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
-
R. Sips (1949)
Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales,
Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
-
R. Sips (1959)
Représentation asymptotique des fonctions de Mathieu et des fonctions sphéroidales. II,
Trans. Amer. Math. Soc. 90 (2), pp. 340–368.
-
R. Sips (1965)
Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill,
Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
-
R. Sips (1967)
Répartition du courant alternatif dans un conducteur cylindrique de section elliptique,
Acad. Roy. Belg. Bull. Cl. Sci. (5) 53 (8), pp. 861–878.