21.5 Modular Transformations21.7 Riemann Surfaces

§21.6 Products

Contents

§21.6(i) Riemann Identity

Let \mathbf{T}=[T_{{jk}}] be an arbitrary h\times h orthogonal matrix (that is, \mathbf{T}\mathbf{T}^{{\mathrm{T}}}=\mathbf{I}) with rational elements. Also, let \mathbf{Z} be an arbitrary g\times h matrix. Define

21.6.1\mathcal{K}=\Integer^{{g\times h}}\mathbf{T}/(\Integer^{{g\times h}}\mathbf{T}\cap\Integer^{{g\times h}}),

that is, \mathcal{K} is the set of all g\times h matrices that are obtained by premultiplying \mathbf{T} by any g\times h matrix with integer elements; two such matrices in \mathcal{K} are considered equivalent if their difference is a matrix with integer elements. Also, let

21.6.2\mathcal{D}=|\mathbf{T}^{{\mathrm{T}}}\Integer^{h}/(\mathbf{T}^{{\mathrm{T}}}\Integer^{h}\cap\Integer^{h})|,

that is, \mathcal{D} is the number of elements in the set containing all h-dimensional vectors obtained by multiplying \mathbf{T}^{{\mathrm{T}}} on the right by a vector with integer elements. Two such vectors are considered equivalent if their difference is a vector with integer elements. Then

21.6.3\prod _{{j=1}}^{h}\mathop{\theta\/}\nolimits\!\left(\sum _{{k=1}}^{h}T_{{jk}}\mathbf{z}_{k}\middle|\boldsymbol{{\Omega}}\right)=\frac{1}{\mathcal{D}^{g}}\sum _{{\mathbf{A}\in\mathcal{K}}}\sum _{{\mathbf{B}\in\mathcal{K}}}e^{{2\pi i\trace\left[\frac{1}{2}\mathbf{A}^{{\mathrm{T}}}\boldsymbol{{\Omega}}\mathbf{A}+\mathbf{A}^{{\mathrm{T}}}[\mathbf{Z}+\mathbf{B}]\right]}}\*\prod _{{j=1}}^{h}\mathop{\theta\/}\nolimits\!\left(\mathbf{z}_{j}+\boldsymbol{{\Omega}}\mathbf{a}_{j}+\mathbf{b}_{j}\middle|\boldsymbol{{\Omega}}\right),

where \mathbf{z}_{j}, \mathbf{a}_{j}, \mathbf{b}_{j} denote respectively the jth columns of \mathbf{Z}, \mathbf{A}, \mathbf{B}. This is the Riemann identity. On using theta functions with characteristics, it becomes

21.6.4\prod _{{j=1}}^{h}\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\sum _{{k=1}}^{h}T_{{jk}}\mathbf{c}_{k}}{\sum _{{k=1}}^{h}T_{{jk}}\mathbf{d}_{k}}\/}\nolimits\!\left(\sum _{{k=1}}^{h}T_{{jk}}\mathbf{z}_{k}\middle|\boldsymbol{{\Omega}}\right)=\frac{1}{\mathcal{D}^{g}}\sum _{{\mathbf{A}\in\mathcal{K}}}\sum _{{\mathbf{B}\in\mathcal{K}}}e^{{-2\pi i\sum _{{j=1}}^{h}\mathbf{b}_{j}\cdot\mathbf{c}_{j}}}\prod _{{j=1}}^{h}\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\mathbf{a}_{j}+\mathbf{c}_{j}}{\mathbf{b}_{j}+\mathbf{d}_{j}}\/}\nolimits\!\left(\mathbf{z}_{j}\middle|\boldsymbol{{\Omega}}\right),

where \mathbf{c}_{j} and \mathbf{d}_{j} are arbitrary h-dimensional vectors. Many identities involving products of theta functions can be established using these formulas.

§21.6(ii) Addition Formulas

Let \boldsymbol{{\alpha}}, \boldsymbol{{\beta}}, \boldsymbol{{\gamma}}, \boldsymbol{{\delta}}\in\Real^{g}. Then

21.6.8\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\gamma}}}\/}\nolimits\!\left(\mathbf{z}_{1}\middle|\boldsymbol{{\Omega}}\right)\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\beta}}}{\boldsymbol{{\delta}}}\/}\nolimits\!\left(\mathbf{z}_{2}\middle|\boldsymbol{{\Omega}}\right)=\sum _{{\boldsymbol{{\nu}}\in\Integer^{g}/\left(2\Integer^{g}\right)}}\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\frac{1}{2}[\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}+\boldsymbol{{\nu}}]}{\boldsymbol{{\gamma}}+\boldsymbol{{\delta}}}\/}\nolimits\!\left(\mathbf{z}_{1}+\mathbf{z}_{2}\middle|2\boldsymbol{{\Omega}}\right)\*\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\frac{1}{2}[\boldsymbol{{\alpha}}-\boldsymbol{{\beta}}+\boldsymbol{{\nu}}]}{\boldsymbol{{\gamma}}-\boldsymbol{{\delta}}}\/}\nolimits\!\left(\mathbf{z}_{1}-\mathbf{z}_{2}\middle|2\boldsymbol{{\Omega}}\right).

Thus \boldsymbol{{\nu}} is a g-dimensional vector whose entries are either 0 or 1. For this result and a generalization see Koizumi (1976) and Belokolos et al. (1994, pp. 38–41). For addition formulas for classical theta functions see §20.7(ii).