24.7 Integral Representations24.9 Inequalities

§24.8 Series Expansions

Contents

§24.8(i) Fourier Series

If n=1,2,\dots and 0\leq x\leq 1, then

The second expansion holds also for n=0 and 0<x<1.

If n=1 with 0<x<1, or n=2,3,\dots with 0\leq x\leq 1, then

24.8.3\mathop{B_{{n}}\/}\nolimits\!\left(x\right)=-\frac{n!}{(2\pi i)^{n}}\sum _{{\substack{k=-\infty\\
k\neq 0}}}^{\infty}\frac{e^{{2\pi ikx}}}{k^{n}}.

If n=1,2,\dots and 0\leq x\leq 1, then

24.8.4\mathop{E_{{2n}}\/}\nolimits\!\left(x\right)=(-1)^{n}\frac{4(2n)!}{\pi^{{2n+1}}}\sum _{{k=0}}^{\infty}\frac{\mathop{\sin\/}\nolimits\!\left((2k+1)\pi x\right)}{(2k+1)^{{2n+1}}},
24.8.5\mathop{E_{{2n-1}}\/}\nolimits\!\left(x\right)=(-1)^{n}\frac{4(2n-1)!}{\pi^{{2n}}}\sum _{{k=0}}^{\infty}\frac{\mathop{\cos\/}\nolimits\!\left((2k+1)\pi x\right)}{(2k+1)^{{2n}}}.

§24.8(ii) Other Series