33.6 Power-Series Expansions in \rho33.8 Continued Fractions

§33.7 Integral Representations

33.7.1\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)=\frac{\rho^{{\ell+1}}2^{\ell}e^{{i\rho-(\pi\eta/2)}}}{|\mathop{\Gamma\/}\nolimits\!\left(\ell+1+i\eta\right)|}\int _{0}^{1}e^{{-2i\rho t}}t^{{\ell+i\eta}}(1-t)^{{\ell-i\eta}}dt,
33.7.2\mathop{{H^{{-}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=\frac{e^{{-i\rho}}\rho^{{-\ell}}}{(2\ell+1)!\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)}\int _{0}^{\infty}e^{{-t}}t^{{\ell-i\eta}}(t+2i\rho)^{{\ell+i\eta}}dt,
33.7.3\mathop{{H^{{-}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=\frac{-ie^{{-\pi\eta}}\rho^{{\ell+1}}}{(2\ell+1)!\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)}\int _{0}^{\infty}\left(\frac{\mathop{\exp\/}\nolimits\!\left(-i(\rho\mathop{\tanh\/}\nolimits t-2\eta t)\right)}{(\mathop{\cosh\/}\nolimits t)^{{2\ell+2}}}+i(1+t^{2})^{\ell}\mathop{\exp\/}\nolimits\!\left(-\rho t+2\eta\mathop{\mathrm{arctan}\/}\nolimits t\right)\right)dt,
33.7.4\mathop{{H^{{+}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=\frac{ie^{{-\pi\eta}}\rho^{{\ell+1}}}{(2\ell+1)!\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)}\int _{{-1}}^{{-i\infty}}e^{{-i\rho t}}(1-t)^{{\ell-i\eta}}(1+t)^{{\ell+i\eta}}dt.

Noninteger powers in (33.7.1)–(33.7.4) and the arctangent assume their principal values (§§4.2(i), 4.2(iv), 4.23(ii)).