§19.4 Derivatives and Differential Equations
Contents
§19.4(i) Derivatives
- Notes:
- These results follow by differentiation of the definitions in §19.2(ii).
- Keywords:
- Legendre’s elliptic integrals, derivatives
- Permalink:
- http://dlmf.nist.gov/19.4.i
19.4.1
19.4.2
19.4.3
19.4.4
- Symbols:
-
: Legendre’s complete elliptic integral of the second kind,
: Legendre’s complete elliptic integral of the third kind,
: partial derivative of
with respect to
,
: real or complex modulus,
: complementary modulus and
: real or complex parameter
- Permalink:
- http://dlmf.nist.gov/19.4.E4
- Encodings:
- TeX, pMML, png
19.4.5
- Symbols:
-
: cosine function,
: Legendre’s incomplete elliptic integral of the first kind,
: Legendre’s incomplete elliptic integral of the second kind,
: partial derivative of
with respect to
,
: sine function,
: real or complex argument,
: real or complex modulus and
: complementary modulus
- Permalink:
- http://dlmf.nist.gov/19.4.E5
- Encodings:
- TeX, pMML, png
19.4.6
- Symbols:
-
: Legendre’s incomplete elliptic integral of the first kind,
: Legendre’s incomplete elliptic integral of the second kind,
: partial derivative of
with respect to
,
: real or complex argument and
: real or complex modulus
- Referenced by:
- §19.30(i)
- Permalink:
- http://dlmf.nist.gov/19.4.E6
- Encodings:
- TeX, pMML, png
19.4.7
- Symbols:
-
: cosine function,
: Legendre’s incomplete elliptic integral of the second kind,
: Legendre’s incomplete elliptic integral of the third kind,
: partial derivative of
with respect to
,
: sine function,
: real or complex argument,
: real or complex modulus,
: complementary modulus and
: real or complex parameter
- Permalink:
- http://dlmf.nist.gov/19.4.E7
- Encodings:
- TeX, pMML, png
§19.4(ii) Differential Equations
- Notes:
- See Cazenave (1969, p. 175). (19.4.8) agrees also
with Edwards (1954, vol. 1, p. 402) and with expansion to first
order in
. The term on the right side in Byrd and Friedman (1971, 118.01)
has the wrong sign. - Keywords:
- Legendre’s elliptic integrals, differential equations
- Permalink:
- http://dlmf.nist.gov/19.4.ii
Let
. Then
19.4.8
- Symbols:
-
: cosine function,
: Legendre’s incomplete elliptic integral of the first kind,
: sine function,
: real or complex argument,
: real or complex modulus,
: complementary modulus and
: differential operator
- Referenced by:
- §19.4(ii)
- Permalink:
- http://dlmf.nist.gov/19.4.E8
- Encodings:
- TeX, pMML, png
19.4.9
If
, then these two equations become hypergeometric
differential equations (15.10.1) for
and
. An analogous differential equation of third order for
is given in Byrd and Friedman (1971, 118.03).

