19.3 Graphics19.5 Maclaurin and Related Expansions

§19.4 Derivatives and Differential Equations

Contents

§19.4(i) Derivatives

19.4.1
\frac{d\mathop{K\/}\nolimits\!\left(k\right)}{dk}=\frac{\mathop{E\/}\nolimits\!\left(k\right)-{k^{{\prime}}}^{2}\mathop{K\/}\nolimits\!\left(k\right)}{k{k^{{\prime}}}^{2}},
\frac{d(\mathop{E\/}\nolimits\!\left(k\right)-{k^{{\prime}}}^{2}\mathop{K\/}\nolimits\!\left(k\right))}{dk}=k\mathop{K\/}\nolimits\!\left(k\right),
19.4.2
\frac{d\mathop{E\/}\nolimits\!\left(k\right)}{dk}=\frac{\mathop{E\/}\nolimits\!\left(k\right)-\mathop{K\/}\nolimits\!\left(k\right)}{k},
\frac{d(\mathop{E\/}\nolimits\!\left(k\right)-\mathop{K\/}\nolimits\!\left(k\right))}{dk}=-\frac{k\mathop{E\/}\nolimits\!\left(k\right)}{{k^{{\prime}}}^{2}},
19.4.3\frac{{d}^{2}\mathop{E\/}\nolimits\!\left(k\right)}{{dk}^{2}}=-\frac{1}{k}\frac{d\mathop{K\/}\nolimits\!\left(k\right)}{dk}=\frac{{k^{{\prime}}}^{2}\mathop{K\/}\nolimits\!\left(k\right)-\mathop{E\/}\nolimits\!\left(k\right)}{k^{2}{k^{{\prime}}}^{2}},
19.4.4\frac{\partial\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)}{\partial k}=\frac{k}{{k^{{\prime}}}^{2}(k^{2}-\alpha^{2})}(\mathop{E\/}\nolimits\!\left(k\right)-{k^{{\prime}}}^{2}\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)).
19.4.5\frac{\partial\mathop{F\/}\nolimits\!\left(\phi,k\right)}{\partial k}={\frac{\mathop{E\/}\nolimits\!\left(\phi,k\right)-{k^{{\prime}}}^{2}\mathop{F\/}\nolimits\!\left(\phi,k\right)}{k{k^{{\prime}}}^{2}}-\frac{k\mathop{\sin\/}\nolimits\phi\mathop{\cos\/}\nolimits\phi}{{k^{{\prime}}}^{2}\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}}},
19.4.6\frac{\partial\mathop{E\/}\nolimits\!\left(\phi,k\right)}{\partial k}=\frac{\mathop{E\/}\nolimits\!\left(\phi,k\right)-\mathop{F\/}\nolimits\!\left(\phi,k\right)}{k},
19.4.7\frac{\partial\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)}{\partial k}=\frac{k}{{k^{{\prime}}}^{2}(k^{2}-\alpha^{2})}\left({\mathop{E\/}\nolimits\!\left(\phi,k\right)-{k^{{\prime}}}^{2}\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)}-\frac{k^{2}\mathop{\sin\/}\nolimits\phi\mathop{\cos\/}\nolimits\phi}{\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}}\right).

§19.4(ii) Differential Equations

Let D_{k}=\ifrac{\partial}{\partial k}. Then

19.4.8(k{k^{{\prime}}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)\mathop{F\/}\nolimits\!\left(\phi,k\right)=\frac{-k\mathop{\sin\/}\nolimits\phi\mathop{\cos\/}\nolimits\phi}{(1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi)^{{3/2}}},
19.4.9(k{k^{{\prime}}}^{2}D_{k}^{2}+{k^{{\prime}}}^{2}D_{k}+k)\mathop{E\/}\nolimits\!\left(\phi,k\right)=\frac{k\mathop{\sin\/}\nolimits\phi\mathop{\cos\/}\nolimits\phi}{\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}}.

If \phi=\pi/2, then these two equations become hypergeometric differential equations (15.10.1) for \mathop{K\/}\nolimits\!\left(k\right) and \mathop{E\/}\nolimits\!\left(k\right). An analogous differential equation of third order for \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right) is given in Byrd and Friedman (1971, 118.03).