§35.7 Gaussian Hypergeometric Function of Matrix Argument
Contents
- §35.7(i) Definition
- §35.7(ii) Basic Properties
- §35.7(iii) Partial Differential Equations
- §35.7(iv) Asymptotic Approximations
§35.7(i) Definition
35.7.1![{\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left({a,b\atop c};\mathbf{T}\right)=\sum _{{k=0}}^{\infty}\frac{1}{k!}\sum _{{|\kappa|=k}}\frac{\left[a\right]_{{\kappa}}\left[b\right]_{{\kappa}}}{\left[c\right]_{{\kappa}}}\mathop{Z_{{\kappa}}\/}\nolimits\!\left(\mathbf{T}\right)},](./35/7/E1.png)
,
;
.
![{\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left({a,b\atop c};\mathbf{T}\right)=\sum _{{k=0}}^{\infty}\frac{1}{k!}\sum _{{|\kappa|=k}}\frac{\left[a\right]_{{\kappa}}\left[b\right]_{{\kappa}}}{\left[c\right]_{{\kappa}}}\mathop{Z_{{\kappa}}\/}\nolimits\!\left(\mathbf{T}\right)},](./35/7/E1.png)
¶ Jacobi Form
35.7.2
;
;
.

§35.7(ii) Basic Properties
¶ Case
35.7.3
¶ Confluent Form
35.7.4
¶ Integral Representation
35.7.5
,
.

¶ Transformations of Parameters
35.7.6
¶ Gauss Formula
35.7.7
.
¶ Reflection Formula
35.7.8
.
§35.7(iii) Partial Differential Equations
Let
(a) be orthogonally invariant, so that
is a symmetric function of
, the eigenvalues of
the matrix argument
; (b) be analytic in
in a neighborhood of
; (c) satisfy
. Subject to the conditions (a)–(c), the function
is the unique solution
of each partial differential equation
35.7.9
for
.

