35.6 Confluent Hypergeometric Functions of Matrix Argument35.8 Generalized Hypergeometric Functions of Matrix Argument

§35.7 Gaussian Hypergeometric Function of Matrix Argument

Contents

§35.7(ii) Basic Properties

§35.7(iii) Partial Differential Equations

Let f:{\boldsymbol{\Omega}}\to\Complex (a) be orthogonally invariant, so that f(\mathbf{T}) is a symmetric function of t_{1},\dots,t_{m}, the eigenvalues of the matrix argument \mathbf{T}\in{\boldsymbol{\Omega}}; (b) be analytic in t_{1},\dots,t_{m} in a neighborhood of \mathbf{T}=\boldsymbol{{0}}; (c) satisfy f(\boldsymbol{{0}})=1. Subject to the conditions (a)–(c), the function f(\mathbf{T})=\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left(a,b;c;\mathbf{T}\right) is the unique solution of each partial differential equation

35.7.9t_{j}(1-t_{j})\frac{{\partial}^{2}F}{{\partial t_{j}}^{2}}-\frac{1}{2}\sum _{{\substack{k=1\\
k\neq j}}}^{m}\frac{t_{k}(1-t_{k})}{t_{j}-t_{k}}\frac{\partial F}{\partial t_{k}}+\left({c-\tfrac{1}{2}(m-1)-\left(a+b-\tfrac{1}{2}(m-3)\right)t_{j}}+\frac{1}{2}\sum _{{\substack{k=1\\
k\neq j}}}^{m}\frac{t_{j}(1-t_{j})}{t_{j}-t_{k}}\right)\frac{\partial F}{\partial t_{j}}=abF,

for j=1,\dots,m.

Systems of partial differential equations for the \mathop{{{}_{{0}}F_{{1}}}\/}\nolimits (defined in §35.8) and \mathop{{{}_{{1}}F_{{1}}}\/}\nolimits functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9).

§35.7(iv) Asymptotic Approximations

Butler and Wood (2002) applies Laplace’s method (§2.3(iii)) to (35.7.5) to derive uniform asymptotic approximations for the functions

35.7.10\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left({\alpha a,\alpha b\atop\alpha c};\mathbf{T}\right)

and

35.7.11\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left({a,b\atop c};\mathbf{I}-\alpha^{{-1}}\mathbf{T}\right)

as \alpha\to\infty. These approximations are in terms of elementary functions.

For other asymptotic approximations for Gaussian hypergeometric functions of matrix argument, see Herz (1955), Muirhead (1982, pp. 264–281, 290, 472, 563), and Butler and Wood (2002).