20.8 Watson’s Expansions20.10 Integrals

§20.9 Relations to Other Functions

Contents

§20.9(i) Elliptic Integrals

With k defined by

20.9.1k={\mathop{\theta _{{2}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right)/{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right)

and the notation of §19.2(ii), the complete Legendre integrals of the first kind may be expressed as theta functions:

20.9.2
\mathop{K\/}\nolimits\!\left(k\right)=\tfrac{1}{2}\pi{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right),
{\mathop{K\/}\nolimits^{{\prime}}}\!\left(k\right)=-i\tau\mathop{K\/}\nolimits\!\left(k\right),

together with (22.2.1).

In the case of the symmetric integrals, with the notation of §19.16(i) we have

20.9.3\mathop{R_{F}\/}\nolimits\!\left(\frac{{\mathop{\theta _{{2}}\/}\nolimits^{{2}}}\!\left(z,q\right)}{{\mathop{\theta _{{2}}\/}\nolimits^{{2}}}\!\left(0,q\right)},\frac{{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(z,q\right)}{{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0,q\right)},\frac{{\mathop{\theta _{{4}}\/}\nolimits^{{2}}}\!\left(z,q\right)}{{\mathop{\theta _{{4}}\/}\nolimits^{{2}}}\!\left(0,q\right)}\right)=\frac{{\mathop{\theta _{{1}}\/}\nolimits^{{\prime}}}\!\left(0,q\right)}{\mathop{\theta _{{1}}\/}\nolimits\!\left(z,q\right)}z,
20.9.4\mathop{R_{F}\/}\nolimits\!\left(0,{\mathop{\theta _{{3}}\/}\nolimits^{{4}}}\!\left(0,q\right),{\mathop{\theta _{{4}}\/}\nolimits^{{4}}}\!\left(0,q\right)\right)=\tfrac{1}{2}\pi,
20.9.5\mathop{\exp\/}\nolimits\!\left(-\frac{\pi\mathop{R_{F}\/}\nolimits\!\left(0,k^{2},1\right)}{\mathop{R_{F}\/}\nolimits\!\left(0,{k^{{\prime}}}^{2},1\right)}\right)=q.

§20.9(ii) Elliptic Functions and Modular Functions

See §§22.2 and 23.6(i) for the relations of Jacobian and Weierstrass elliptic functions to theta functions.

The relations (20.9.1) and (20.9.2) between k and \tau (or q) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485).

As a function of \tau, k^{2} is the elliptic modular function; see Walker (1996, Chapter 7) and (23.15.2), (23.15.6).

§20.9(iii) Riemann Zeta Function

See Koblitz (1993, Ch. 2, §4) and Titchmarsh (1986b, pp. 21–22). See also §§20.10(i) and 25.2.