19.8 Quadratic Transformations19.10 Relations to Other Functions

§19.9 Inequalities

Contents

§19.9(i) Complete Integrals

Throughout this subsection 0<k<1, except in (19.9.4).

19.9.1
\mathop{\ln\/}\nolimits 4\leq\mathop{K\/}\nolimits\!\left(k\right)+\mathop{\ln\/}\nolimits k^{{\prime}}\leq\pi/2,
1\leq\mathop{E\/}\nolimits\!\left(k\right)\leq\pi/2.
1\leq(2/\pi)\sqrt{1-\alpha^{2}}\mathop{\Pi\/}\nolimits\!\left(\alpha^{2},k\right)\leq 1/k^{{\prime}},\alpha^{2}<1.
19.9.21+\frac{{k^{{\prime}}}^{2}}{8}<\frac{\mathop{K\/}\nolimits\!\left(k\right)}{\mathop{\ln\/}\nolimits\!\left(4/k^{{\prime}}\right)}<1+\frac{{k^{{\prime}}}^{2}}{4},
19.9.39+\frac{k^{2}{k^{{\prime}}}^{2}}{8}<\frac{(8+k^{2})\mathop{K\/}\nolimits\!\left(k\right)}{\mathop{\ln\/}\nolimits\!\left(4/k^{{\prime}}\right)}<9.096.

The left-hand inequalities in (19.9.2) and (19.9.3) are equivalent, but the right-hand inequality of (19.9.3) is sharper than that of (19.9.2) when 0<k^{2}\leq 0.922.

19.9.4\left(\frac{1+{k^{{\prime}}}^{{3/2}}}{2}\right)^{{2/3}}\leq\frac{2}{\pi}\mathop{E\/}\nolimits\!\left(k\right)\leq\left(\frac{1+{k^{{\prime}}}^{2}}{2}\right)^{{1/2}}

for 0\leq k\leq 1. The lower bound in (19.9.4) is sharper than 2/\pi when 0\leq k^{2}\leq 0.9960.

19.9.5\mathop{\ln\/}\nolimits\frac{(1+\sqrt{k^{{\prime}}})^{2}}{k}<\frac{\pi\mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right)}{2\!\mathop{K\/}\nolimits\!\left(k\right)}<\mathop{\ln\/}\nolimits\frac{2(1+k^{{\prime}})}{k}.

For a sharper, but more complicated, version of (19.9.5) see Anderson et al. (1990).

The perimeter L(a,b) of an ellipse with semiaxes a,b is given by

19.9.9L(a,b)=4a\mathop{E\/}\nolimits\!\left(k\right),k^{2}=1-(b^{2}/a^{2}), a>b.

Almkvist and Berndt (1988) list thirteen approximations to L(a,b) that have been proposed by various authors. The earliest is due to Kepler and the most accurate to Ramanujan. Ramanujan’s approximation and its leading error term yield the following approximation to L(a,b)/(\pi(a+b)):

19.9.101+\frac{3\lambda^{2}}{10+\sqrt{4-3\lambda^{2}}}+\frac{3\lambda^{{10}}}{2^{{17}}},\lambda=\dfrac{a-b}{a+b}.

Even for the extremely eccentric ellipse with a=99 and b=1, this is correct within 0.023%. Barnard et al. (2000) shows that nine of the thirteen approximations, including Ramanujan’s, are from below and four are from above. See also Barnard et al. (2001).

§19.9(ii) Incomplete Integrals

Throughout this subsection we assume that 0<k<1, 0\leq\phi\leq\pi/2, and \Delta=\sqrt{1-k^{2}{\mathop{\sin\/}\nolimits^{{2}}}\phi}>0.

Inequalities for both \mathop{F\/}\nolimits\!\left(\phi,k\right) and \mathop{E\/}\nolimits\!\left(\phi,k\right) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). For example,

19.9.17L\leq\mathop{F\/}\nolimits\!\left(\phi,k\right)\leq\sqrt{UL}\leq\tfrac{1}{2}(U+L)\leq U,

where

19.9.18
L=(1/\sigma)\mathop{\mathrm{arctanh}\/}\nolimits\!\left(\sigma\mathop{\sin\/}\nolimits\phi\right),\sigma=\sqrt{(1+k^{2})/2},
U=\tfrac{1}{2}\mathop{\mathrm{arctanh}\/}\nolimits\!\left(\mathop{\sin\/}\nolimits\phi\right)+\tfrac{1}{2}k^{{-1}}\mathop{\mathrm{arctanh}\/}\nolimits\!\left(k\mathop{\sin\/}\nolimits\phi\right).

Other inequalities for \mathop{F\/}\nolimits\!\left(\phi,k\right) can be obtained from inequalities for \mathop{R_{F}\/}\nolimits\!\left(x,y,z\right) given in Carlson (1966, (2.15)) and Carlson (1970) via (19.25.5).