5.5 Functional Relations5.7 Series Expansions

§5.6 Inequalities

Contents

§5.6(i) Real Variables

Throughout this subsection x>0.

5.6.11<(2\pi)^{{-1/2}}x^{{(1/2)-x}}e^{x}\mathop{\Gamma\/}\nolimits\!\left(x\right)<e^{{1/(12x)}},
5.6.2\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(x\right)}+\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(1/x\right)}\leq 2,
5.6.3\frac{1}{(\mathop{\Gamma\/}\nolimits\!\left(x\right))^{2}}+\frac{1}{(\mathop{\Gamma\/}\nolimits\!\left(1/x\right))^{2}}\leq 2,

Gautschi’s Inequality

5.6.4x^{{1-s}}<\frac{\mathop{\Gamma\/}\nolimits\!\left(x+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(x+s\right)}<(x+1)^{{1-s}},0<s<1.

Kershaw’s Inequality

For further results see Alzer (2008), Qi (2008), and Koumandos and Lamprecht (2010).

§5.6(ii) Complex Variables

5.6.6|\mathop{\Gamma\/}\nolimits\!\left(x+iy\right)|\leq|\mathop{\Gamma\/}\nolimits\!\left(x\right)|,
5.6.7|\mathop{\Gamma\/}\nolimits\!\left(x+iy\right)|\geq(\mathop{\mathrm{sech}\/}\nolimits\!\left(\pi y\right))^{{1/2}}\mathop{\Gamma\/}\nolimits\!\left(x\right),x\geq\tfrac{1}{2}.

For b-a\geq 1, a\geq 0, and z=x+iy with x>0,

5.6.8\left|\frac{\mathop{\Gamma\/}\nolimits\!\left(z+a\right)}{\mathop{\Gamma\/}\nolimits\!\left(z+b\right)}\right|\leq\frac{1}{|z|^{{b-a}}}.