§26.6 Other Lattice Path Numbers
Contents
- §26.6(i) Definitions
- §26.6(ii) Generating Functions
- §26.6(iii) Recurrence Relations
- §26.6(iv) Identities
§26.6(i) Definitions
¶ Dellanoy Number
is the number of paths from
to
that are composed of
directed line segments of the form
,
, or
.
26.6.1
See Table 26.6.1.
Table 26.6.1: Dellanoy numbers
.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
| 2 | 1 | 5 | 13 | 25 | 41 | 61 | 85 | 113 | 145 | 181 | 221 |
| 3 | 1 | 7 | 25 | 63 | 129 | 231 | 377 | 575 | 833 | 1159 | 1561 |
| 4 | 1 | 9 | 41 | 129 | 321 | 681 | 1289 | 2241 | 3649 | 5641 | 8361 |
| 5 | 1 | 11 | 61 | 231 | 681 | 1683 | 3653 | 7183 | 13073 | 22363 | 36365 |
| 6 | 1 | 13 | 85 | 377 | 1289 | 3653 | 8989 | 19825 | 40081 | 75517 | 1 34245 |
| 7 | 1 | 15 | 113 | 575 | 2241 | 7183 | 19825 | 48639 | 1 08545 | 2 24143 | 4 33905 |
| 8 | 1 | 17 | 145 | 833 | 3649 | 13073 | 40081 | 1 08545 | 2 65729 | 5 98417 | 12 56465 |
| 9 | 1 | 19 | 181 | 1159 | 5641 | 22363 | 75517 | 2 24143 | 5 98417 | 14 62563 | 33 17445 |
| 10 | 1 | 21 | 221 | 1561 | 8361 | 36365 | 1 34245 | 4 33905 | 12 56465 | 33 17445 | 80 97453 |
¶ Motzkin Number
is the number of lattice paths from
to
that stay on or
above the line
and are composed of directed line segments of the form
,
, or
.
26.6.2
See Table 26.6.2.
Table 26.6.2: Motzkin numbers
.
| 0 | 1 | 4 | 9 | 8 | 323 | 12 | 15511 | 16 | 8 53467 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 5 | 21 | 9 | 835 | 13 | 41835 | 17 | 23 56779 |
| 2 | 2 | 6 | 51 | 10 | 2188 | 14 | 1 13634 | 18 | 65 36382 |
| 3 | 4 | 7 | 127 | 11 | 5798 | 15 | 3 10572 | 19 | 181 99284 |
¶ Narayana Number
is the number of lattice paths from
to
that stay on or
above the line
, are composed of directed line segments of the form
or
, and for which there are exactly
occurrences at which a
segment of the form
is followed by a segment of the form
.
26.6.3
See Table 26.6.3.
Table 26.6.3: Narayana numbers
.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | ||||||||||
| 1 | 0 | 1 | |||||||||
| 2 | 0 | 1 | 1 | ||||||||
| 3 | 0 | 1 | 3 | 1 | |||||||
| 4 | 0 | 1 | 6 | 6 | 1 | ||||||
| 5 | 0 | 1 | 10 | 20 | 10 | 1 | |||||
| 6 | 0 | 1 | 15 | 50 | 50 | 15 | 1 | ||||
| 7 | 0 | 1 | 21 | 105 | 175 | 105 | 21 | 1 | |||
| 8 | 0 | 1 | 28 | 196 | 490 | 490 | 196 | 28 | 1 | ||
| 9 | 0 | 1 | 36 | 336 | 1176 | 1764 | 1176 | 336 | 36 | 1 | |
| 10 | 0 | 1 | 45 | 540 | 2520 | 5292 | 5292 | 2520 | 540 | 45 | 1 |
¶ Schröder Number
is the number of paths from
to
that stay on or above the
diagonal
and are composed of directed line segments of the form
,
, or
.
26.6.4
.
See Table 26.6.4.
Table 26.6.4: Schröder numbers
.
| 0 | 1 | 4 | 90 | 8 | 41586 | 12 | 272 97738 | 16 | 2 09271 56706 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 5 | 394 | 9 | 2 06098 | 13 | 1420 78746 | 17 | 11 18180 26018 |
| 2 | 6 | 6 | 1806 | 10 | 10 37718 | 14 | 7453 87038 | 18 | 60 03188 53926 |
| 3 | 22 | 7 | 8558 | 11 | 52 93446 | 15 | 39376 03038 | 19 | 323 67243 17174 |
§26.6(ii) Generating Functions
For sufficiently small
and
,
26.6.5
26.6.6
26.6.7
26.6.8
26.6.9
§26.6(iii) Recurrence Relations
26.6.10
,
26.6.11
.

§26.6(iv) Identities
26.6.12
26.6.13
26.6.14

