26 Combinatorial Analysis26.2 Basic Definitions

§26.1 Special Notation

(For other notation see Notation for the Special Functions.)

x real variable.
h,j,k,\ell,m,n nonnegative integers.
\lambda integer partition.
\pi plane partition.
\left|A\right| number of elements of a finite set A.
j\divides k j divides k.
(h,k) greatest common divisor of positive integers h and k.

The main functions treated in this chapter are:

\binom{m}{n} binomial coefficient.
\multinomial{m}{n_{1},n_{2},\ldots,n_{k}} multinomial coefficient.
\mathop{\genfrac{<}{>}{0.0pt}{}{m}{n}\/}\nolimits Eulerian number.
\genfrac{[}{]}{0.0pt}{}{m}{n}_{{q}} Gaussian polynomial.
\mathop{B\/}\nolimits\!\left(n\right) Bell number.
\mathop{C\/}\nolimits\!\left(n\right) Catalan number.
\mathop{p\/}\nolimits\!\left(n\right) number of partitions of n.
\mathop{p_{{k}}\/}\nolimits\!\left(n\right) number of partitions of n into at most k parts.
\mathop{\mathit{pp}\/}\nolimits\!\left(n\right) number of plane partitions of n.
\mathop{s\/}\nolimits\!\left(n,k\right) Stirling numbers of the first kind.
\mathop{S\/}\nolimits\!\left(n,k\right) Stirling numbers of the second kind.

Alternative Notations

Many combinatorics references use the rising and falling factorials:

26.1.1
{x}^{{\overline{n}}}=x(x+1)(x+2)\cdots(x+n-1),
{x}^{{\underline{n}}}=x(x-1)(x-2)\cdots(x-n+1).

Other notations for \mathop{s\/}\nolimits\!\left(n,k\right), the Stirling numbers of the first kind, include S_{n}^{{(k)}} (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S_{n}^{k} (Jordan (1939), Moser and Wyman (1958a)), \binom{n-1}{k-1}B_{{n-k}}^{{(n)}} (Milne-Thomson (1933)), (-1)^{{n-k}}S_{1}(n-1,n-k) (Carlitz (1960), Gould (1960)), (-1)^{{n-k}}\left[n\atop k\right] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)).

Other notations for \mathop{S\/}\nolimits\!\left(n,k\right), the Stirling numbers of the second kind, include \mathscr{S}^{{(k)}}_{n} (Fort (1948)), \mathfrak{S}_{n}^{k} (Jordan (1939)), \sigma _{n}^{k} (Moser and Wyman (1958b)), \binom{n}{k}B_{{n-k}}^{{(-k)}} (Milne-Thomson (1933)), S_{2}(k,n-k) (Carlitz (1960), Gould (1960)), \left\{ n\atop k\right\} (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).