22.7 Landen Transformations22.9 Cyclic Identities

§22.8 Addition Theorems

Contents

§22.8(i) Sum of Two Arguments

22.8.4\mathop{\mathrm{cd}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{cd}\/}\nolimits u\mathop{\mathrm{cd}\/}\nolimits v-{k^{{\prime}}}^{2}\mathop{\mathrm{sd}\/}\nolimits u\mathop{\mathrm{nd}\/}\nolimits u\mathop{\mathrm{sd}\/}\nolimits v\mathop{\mathrm{nd}\/}\nolimits v}{1+k^{2}{k^{{\prime}}}^{2}{\mathop{\mathrm{sd}\/}\nolimits^{{2}}}u{\mathop{\mathrm{sd}\/}\nolimits^{{2}}}v},
22.8.5\mathop{\mathrm{sd}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{sd}\/}\nolimits u\mathop{\mathrm{cd}\/}\nolimits v\mathop{\mathrm{nd}\/}\nolimits v+\mathop{\mathrm{sd}\/}\nolimits v\mathop{\mathrm{cd}\/}\nolimits u\mathop{\mathrm{nd}\/}\nolimits u}{1+k^{2}{k^{{\prime}}}^{2}{\mathop{\mathrm{sd}\/}\nolimits^{{2}}}u{\mathop{\mathrm{sd}\/}\nolimits^{{2}}}v},
22.8.6\mathop{\mathrm{nd}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{nd}\/}\nolimits u\mathop{\mathrm{nd}\/}\nolimits v+k^{2}\mathop{\mathrm{sd}\/}\nolimits u\mathop{\mathrm{cd}\/}\nolimits u\mathop{\mathrm{sd}\/}\nolimits v\mathop{\mathrm{cd}\/}\nolimits v}{1+k^{2}{k^{{\prime}}}^{2}{\mathop{\mathrm{sd}\/}\nolimits^{{2}}}u{\mathop{\mathrm{sd}\/}\nolimits^{{2}}}v},
22.8.7\mathop{\mathrm{dc}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{dc}\/}\nolimits u\mathop{\mathrm{dc}\/}\nolimits v+{k^{{\prime}}}^{2}\mathop{\mathrm{sc}\/}\nolimits u\mathop{\mathrm{nc}\/}\nolimits u\mathop{\mathrm{sc}\/}\nolimits v\mathop{\mathrm{nc}\/}\nolimits v}{1-{k^{{\prime}}}^{2}{\mathop{\mathrm{sc}\/}\nolimits^{{2}}}u{\mathop{\mathrm{sc}\/}\nolimits^{{2}}}v},
22.8.8\mathop{\mathrm{nc}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{nc}\/}\nolimits u\mathop{\mathrm{nc}\/}\nolimits v+\mathop{\mathrm{sc}\/}\nolimits u\mathop{\mathrm{dc}\/}\nolimits u\mathop{\mathrm{sc}\/}\nolimits v\mathop{\mathrm{dc}\/}\nolimits v}{1-{k^{{\prime}}}^{2}{\mathop{\mathrm{sc}\/}\nolimits^{{2}}}u{\mathop{\mathrm{sc}\/}\nolimits^{{2}}}v},
22.8.9\mathop{\mathrm{sc}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{sc}\/}\nolimits u\mathop{\mathrm{dc}\/}\nolimits v\mathop{\mathrm{nc}\/}\nolimits v+\mathop{\mathrm{sc}\/}\nolimits v\mathop{\mathrm{dc}\/}\nolimits u\mathop{\mathrm{nc}\/}\nolimits u}{1-{k^{{\prime}}}^{2}{\mathop{\mathrm{sc}\/}\nolimits^{{2}}}u{\mathop{\mathrm{sc}\/}\nolimits^{{2}}}v},
22.8.10\mathop{\mathrm{ns}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{ns}\/}\nolimits u\mathop{\mathrm{ds}\/}\nolimits v\mathop{\mathrm{cs}\/}\nolimits v-\mathop{\mathrm{ns}\/}\nolimits v\mathop{\mathrm{ds}\/}\nolimits u\mathop{\mathrm{cs}\/}\nolimits u}{{\mathop{\mathrm{cs}\/}\nolimits^{{2}}}v-{\mathop{\mathrm{cs}\/}\nolimits^{{2}}}u},
22.8.11\mathop{\mathrm{ds}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{ds}\/}\nolimits u\mathop{\mathrm{cs}\/}\nolimits v\mathop{\mathrm{ns}\/}\nolimits v-\mathop{\mathrm{ds}\/}\nolimits v\mathop{\mathrm{cs}\/}\nolimits u\mathop{\mathrm{ns}\/}\nolimits u}{{\mathop{\mathrm{cs}\/}\nolimits^{{2}}}v-{\mathop{\mathrm{cs}\/}\nolimits^{{2}}}u},
22.8.12\mathop{\mathrm{cs}\/}\nolimits(u+v)=\frac{\mathop{\mathrm{cs}\/}\nolimits u\mathop{\mathrm{ds}\/}\nolimits v\mathop{\mathrm{ns}\/}\nolimits v-\mathop{\mathrm{cs}\/}\nolimits v\mathop{\mathrm{ds}\/}\nolimits u\mathop{\mathrm{ns}\/}\nolimits u}{{\mathop{\mathrm{cs}\/}\nolimits^{{2}}}v-{\mathop{\mathrm{cs}\/}\nolimits^{{2}}}u}.

See also Carlson (2004).

§22.8(ii) Alternative Forms for Sum of Two Arguments

See also Carlson (2004).

§22.8(iii) Special Relations Between Arguments

In the following equations the common modulus k is again suppressed.

A geometric interpretation of (22.8.20) analogous to that of (23.10.5) is given in Whittaker and Watson (1927, p. 530).

Next, let

22.8.22z_{1}+z_{2}+z_{3}+z_{4}=2\!\mathop{K\/}\nolimits\!\left(k\right).

Then

22.8.23\begin{vmatrix}\mathop{\mathrm{sn}\/}\nolimits z_{1}\mathop{\mathrm{cn}\/}\nolimits z_{1}&\mathop{\mathrm{cn}\/}\nolimits z_{1}\mathop{\mathrm{dn}\/}\nolimits z_{1}&\mathop{\mathrm{cn}\/}\nolimits z_{1}&\mathop{\mathrm{dn}\/}\nolimits z_{1}\\
\mathop{\mathrm{sn}\/}\nolimits z_{2}\mathop{\mathrm{cn}\/}\nolimits z_{2}&\mathop{\mathrm{cn}\/}\nolimits z_{2}\mathop{\mathrm{dn}\/}\nolimits z_{2}&\mathop{\mathrm{cn}\/}\nolimits z_{2}&\mathop{\mathrm{dn}\/}\nolimits z_{2}\\
\mathop{\mathrm{sn}\/}\nolimits z_{3}\mathop{\mathrm{cn}\/}\nolimits z_{3}&\mathop{\mathrm{cn}\/}\nolimits z_{3}\mathop{\mathrm{dn}\/}\nolimits z_{3}&\mathop{\mathrm{cn}\/}\nolimits z_{3}&\mathop{\mathrm{dn}\/}\nolimits z_{3}\\
\mathop{\mathrm{sn}\/}\nolimits z_{4}\mathop{\mathrm{cn}\/}\nolimits z_{4}&\mathop{\mathrm{cn}\/}\nolimits z_{4}\mathop{\mathrm{dn}\/}\nolimits z_{4}&\mathop{\mathrm{cn}\/}\nolimits z_{4}&\mathop{\mathrm{dn}\/}\nolimits z_{4}\end{vmatrix}=0.

For these and related identities see Copson (1935, pp. 415–416).

If sums/differences of the z_{j}’s are rational multiples of \mathop{K\/}\nolimits\!\left(k\right), then further relations follow. For instance, if

22.8.24z_{1}-z_{2}=z_{2}-z_{3}=\tfrac{2}{3}\!\mathop{K\/}\nolimits\!\left(k\right),

then

22.8.25\frac{(\mathop{\mathrm{dn}\/}\nolimits z_{2}+\mathop{\mathrm{dn}\/}\nolimits z_{3})(\mathop{\mathrm{dn}\/}\nolimits z_{3}+\mathop{\mathrm{dn}\/}\nolimits z_{1})(\mathop{\mathrm{dn}\/}\nolimits z_{1}+\mathop{\mathrm{dn}\/}\nolimits z_{2})}{\mathop{\mathrm{dn}\/}\nolimits z_{1}+\mathop{\mathrm{dn}\/}\nolimits z_{2}+\mathop{\mathrm{dn}\/}\nolimits z_{3}}

is independent of z_{1}, z_{2}, z_{3}. Similarly, if

22.8.26z_{1}-z_{2}=z_{2}-z_{3}=z_{3}-z_{4}=\tfrac{1}{2}\!\mathop{K\/}\nolimits\!\left(k\right),

then

22.8.27\mathop{\mathrm{dn}\/}\nolimits z_{1}\mathop{\mathrm{dn}\/}\nolimits z_{3}=\mathop{\mathrm{dn}\/}\nolimits z_{2}\mathop{\mathrm{dn}\/}\nolimits z_{4}=k^{{\prime}}.

Greenhill (1959, pp. 121–130) reviews these results in terms of the geometric poristic polygon constructions of Poncelet. Generalizations are given in §22.9.