33.8 Continued Fractions33.10 Limiting Forms for Large \rho or Large \left|\eta\right|

§33.9 Expansions in Series of Bessel Functions

Contents

§33.9(i) Spherical Bessel Functions

33.9.1\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)=\rho\sum _{{k=0}}^{\infty}a_{k}\mathop{\mathsf{j}_{{\ell+k}}\/}\nolimits\!\left(\rho\right),

where the function \mathop{\mathsf{j}\/}\nolimits is as in §10.47(ii), a_{{-1}}=0, a_{0}=(2\ell+1)!!\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right), and

33.9.2\frac{k(k+2\ell+1)}{2k+2\ell+1}a_{k}-2\eta a_{{k-1}}+\frac{(k-2)(k+2\ell-1)}{2k+2\ell-3}a_{{k-2}}=0,k=1,2,\dots.

The series (33.9.1) converges for all finite values of \eta and \rho.

§33.9(ii) Bessel Functions and Modified Bessel Functions

In this subsection the functions \mathop{J\/}\nolimits, \mathop{I\/}\nolimits, and \mathop{K\/}\nolimits are as in §§10.2(ii) and 10.25(ii).

For other asymptotic expansions of \mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right) see Fröberg (1955, §8) and Humblet (1985).